

Ecological Consulting • Native Plant Nursery •
Restoration Services • Cultural Resource Management •

Calumet Summit 2010 Linking Science to Restoration

Science-based Restoration

Baseline data

- Biotic-abiotic data sets
- Metrics/Indicators
- Timeframe and budget constraints
- Assumptions based on previous research
- Ethnobotanical-cultural investigations
- Economics, public heath etc..

Best Available Science

- Innovation
- Design

Implementation

Historical Ecology Handbook

> A Restorationists Guide to Reference Ecosystems

CAMPELE, MORNMAN

GAN A. HOWELL

RANDORNEN

Society for Ecological Restoration International

THE INTERNATIONAL SOCIETY FOR ECOLOGICAL ECONOMICS

Textbook Definitions

- Restoration: "return to exact pre-disturbance conditions"
 - Example: Remove invasive species from an otherwise intact system
- Reclamation: Create a site similar in ecologic function with similar but not necessarily the same organisms (the new state is useful, but not necessarily the same)
 - Example: Seed site of a former prairie with "JFNew Basic Prairie Mix"
- Reallocation: Directing a site to a state that does not necessarily reflect pre-disturbance conditions
 - Example: Planting a site that had once been forested to prairie
- Reconciliation, remediation, creation, etc...

Ecosystem Structure (species composition, soil structure,...)

Reclamation

Restoration

SULA CREAT

Great Lakes Multi-Year Restoration Action Plan Outline

Tracking Progress

- Targets and Measures toward Restoration and Protection Goals and Objectives
- Accountability System to allow systematic reporting and public access to expenditures and progress
 Annual Reports starting in 2011

Appropriate <u>science</u> will guide future actions

"[Restoration monitoring] may allow restoration practitioners to detect early warnings that the restoration effort is not on track, to gauge how well a restoration site is functioning, to coordinate projects and efforts for consistent and successful restoration, and to evaluate the ecological health of specific coastal habitats both before and after project completion."

- Science-Based Restoration Monitoring of Coastal Habitats (NOAA)

Accountability, Monitoring, Evaluation, Communication, and Partnerships

Information needs to be based on best available science, and compiled and communicated consistently to decisionmakers to allow assessment of ecosystem conditions and tracking of restoration progress.

Landscape Conservation Cooperatives

Landscape Conservation Cooperatives

"[LCCs] will provide a strong link between science and conservation delivery without duplicating existing partnerships or creating burdensome or unnecessary bureaucracy."

LCCs:

- Provide scientific and technical support for conservation at "landscape" scales
- Focus on the entire range of an identified priority species or group of species
- Support biological planning, conservation design, prioritizing and coordinating research, and designing species inventory and monitoring programs

Environmental Systems

"Everyone lives downstream from someone else." - Anonymous

Great Konomick River Restoration

Native Plants:

Their Role in the Landscape & Ecosystem

What are native plants?

Naturally occurring plants within a specific habitat of a specific geographic region.

- Adaptable
- Resistant to disease
- Drought and pest tolerant
- Support wildlife habitat
- Provide food / shelter
- Promote ecosystem health
- Promote ecosystem resilience
- Improve water / air quality
- Reduce maintenance costs

Not All Green Space is Created Equal... (but does it work?)

Figure 4. Comparison of measured hourly infiltration rates and soil bulk density under multispecies buffer, crops, and grazed pasture (from Bharati et al. 2002)

Figure 2. Near-saturated hydraulic conductives at 0- to 5-cm depth of natural prairie, no-till, and conventional till farm fields in the Palouse region of eastern Washington (Fuentes, Flurry, and Bezdicek 2004)

Management v. Restoration

Giant reed grass (Phragmites australis)

Chemical Methods

- Spot Spraying
- Hand Wicking
- Boom/Aerial Spraying
 Mechanical Methods
- Cutting/Mowing
- Hand Pulling
- Burning
 Biological Methods
- Natural competition
- Introduced competitors
 <u>Hydrological Methods</u>
- Water level alteration

Techniques are usually selected based on effectiveness, available resources, proximity of desirable vegetation, plant growth form, site accessibility, hydrology, or other factors.

IVM, or Integrated Vegetation Management, is a practice that utilizes multiple techniques, and often produces the best results.

Ecosystem Resiliency

"Ecosystem resilience describes the capacity of an ecosystem to cope with disturbances, such as storms, fire and pollution, without shifting into a qualitatively different state. A resilient ecosystem has the capacity to withstand shocks and surprises and, if damaged, to rebuild itself. In a resilient ecosystem, the process of rebuilding after disturbance promotes renewal and innovation."

Adaptive Management

- Use best available science, and adapt as new science, information and methodologies become available.
- ID and evaluate conservation targets
- Information/data distribution
- Improve products, services and restoration programs.
- Detect new and emerging environmental challenges

Science, Innovation and Design...

Increased complexities in Calumet – contamination where will it move/migrate in reaction to climate change

Approaches to Stabilization

Conventional Stabilization	Ecological Stabilization
 Shear strength/shear stress Armor-based approach Design considerations focus on velocities, flood flow elevations, sitespecific conditions. 	 Shear strength/shear stress Biotechnical armor-based or redirective approaches Design considerations focus on velocities, flood flows, site-specific conditions AND bankfull elevations, geomorphology, aquatic/riparian habitat availability and potential, reach and watershed conditions.

Hydrologic/Geomorphology Field Assessment

(forensic H₂O accounting)

Streams/Channels/Banks

- Geologic setting
- Watershed setting
- Bank and watershed soils/vegetation
- Velocity/Flow measurements
- Bed sediment
- Bed/bank stability
- Bankfull ID
- Stream classification, e.g., Rosgen
- Water quality

Indiana Dunes State Park Auxiliary Parking Area November 2004

Live Web Cam

Dunes Creek Watershed Restoration

Chesterton, IN April 9, 2010 1:15 pm Reset 2010 Thu Fri Tue Wed Sa 3 8 9 6 🔺 13:15 🕨 💽 Share Im Stream Time-Lapse Movie 🔎 Enlarge Image

NOAA CZM Project Webcam http://www.earthcam.com/clients/noaa/indianadunes/

In Summary

- Restoration ecology is the art of managing an ecosystem, dynamic as it is, to a target successional state
- Assess targets, resources, and timeframe
- Ecological restoration standards needed
- Transfer of information
- Adaptive management
- Best available science and technology will lead to innovation and sustainable design.

Valpo H.S. allows 10 outside students PAGE 9

Creating Destination through Restoration

Image courtesy of Hitchcock Design Group

Linking Research to Action...

...will invariably connect People to Places.

Direct Additional Questions to:

Steve Barker Restoration Ecologist sbarker@jfnew.com 574.586.3400

www.JFNew.com