The Southwest Lake Michigan Pilot Study:

Developing an Inventory of Toxic Air Emissions from Area Sources in the Chicago, Milwaukee, and Gary Urban Areas, 1993

** FINAL **

December 1995

U.S. Environmental Protection Agency Pilot Program for Emissions Inventory Under the Clean Air Act Sections 112(c), 112(k) and 112(m)

Submitted by:

Great Lakes Commission 400 Fourth Street Ann Arbor, MI 48103-4816

Submitted to:

U.S. Environmental Protection Agency Region 5 77 West Jackson Blvd. Chicago, IL 60604

On behalf of:

Illinois Environmental Protection Agency, Division of Air Pollution Control Indiana Department of Environmental Management, Office of Air Management Wisconsin Department of Natural Resources, Bureau of Air Management

Table of Contents

TA	ABLE OF CONTENTS ii
LI	ST OF TABLESiv
LI	ST OF FIGURES
A	CRONYMS AND ABBREVIATIONS vii
Ρŀ	REFACE ix
A	CKNOWLEDGMENTS
EX	XECUTIVE SUMMARY xii
1.	INTRODUCTION
2.	OBJECTIVES Urban Area Source Emissions Estimation Goal Under the Clean Air Act 1986 Great Lakes Governors' Toxic Substances Control Agreement and CAA Section 112(m) Target Compounds
3.	METHODOLOGY10Air Toxics Emissions Inventory Protocol for the Great Lakes States10Developing and Testing Client/Server Emissions Estimation and Inventory13Software: RAPIDS13Collecting and Compiling Data from Three States13Coordination Methods14
4.	RESULTS16Urban Area Source Emissions Estimation Goal Under the 1990 CAA16Overview of the RAPIDS System19
5.	CONCLUSIONS104Implications for the Protocol104Implications for RAPIDS106Implications for FIRE108Implications for the Full Eight-State Regional Inventory and Next Steps110

Table of Contents

(continued)

6.	APPENDICES		. 111
	Appendix A:	Illinois Toxic Emissions Inventory	. 112
		round	
	Data S	Sources	. 112
	Calcul	ation Methods	. 115
	Result	s	. 127
	Appendix B:	Indiana Toxic Emissions Inventory	. 228
	Backg	round	. 228
	Data S	Sources	. 228
	Calcul	ation Methods	. 229
	Result	s	. 231
	Appendix C:	Wisconsin Toxic Emissions Inventory	. 234
	Backg	round	. 234
	Data S	Sources	. 234
	Calcul	ation Methods	. 235
	Result	s	. 267
	Appendix D:	Index of SIC Codes	. 279
	Appendix E:	Carcinogenicity Ratings for Target Compounds Included in the	
		Regional Toxic Air Emissions Inventory Based on the U.S. EPA's	
		Integrated Risk Information System (IRIS) Database (September 1995) .	. 294
	Appendix F:	Great Lakes Commission Regional Emission Inventory of Toxic Air	
		Contaminants Steering Committee	. 296
	Appendix G:	Southwest Lake Michigan Pilot Study Subcommittee	. 298
	Appendix H:	Southwest Lake Michigan Pilot Study Quality Assurance/	
		Quality Control Committee	. 299
	Appendix I:	Southwest Lake Michigan Pilot Study Internet Mailing List:	
		Airtoxics@great-lakes.net	. 300

List of Tables

Table 2-1:	List of Target Compounds for the Regional Toxic Air Emissions Inventory	8
Table 3-1:	Personnel Responsible for Pilot Inventory Compilation	
	and Quality Assurance/Quality Control	. 14
Table 4-1:	Regional Summary of Pollutant Emissions, by State and Region, for all Inventoried	1
	Sources in the Southwest Lake Michigan Pilot Project Study Area, 1993	. 28
Table 4-2:	Regional Toxic Air Emissions by Inventoried Source for the Southwest	
	Lake Michigan Pilot Project Study Area, 1993	. 29
Table A-1:	Summary of Illinois Emissions	
Table A-2:	Cook County IL, Emissions by SIC for Sources < 25 tons/year	131
Table A-3:	DuPage County IL, Emissions by SIC for Sources < 25 tons/year	166
Table A-4:	Grundy County IL, Emissions by SIC for Sources < 25 tons/year	175
Table A-5:	Kane County IL, Emissions by SIC for Sources < 25 tons/year	177
Table A-6:	Lake County IL, Emissions by SIC for Sources < 25 tons/year	186
Table A-7:	McHenry County IL, Emissions by SIC for Sources < 25 tons/year	194
Table A-8:	Will County IL, Emissions by SIC for Sources < 25 tons/year	200
Table A-9:	Illinois Emission Factors Used for Natural Gas Combustion	
Table A-10:	Illinois Emission Factors Used for Fuel Oil Combustion	220
Table A-11:	Illinois Emission Factors Used for Coal Combustion	221
Table A-12:	Illinois Emission Factors Used for Internal Combustion	221
Table A-13:	Illinois Emission Factors Used for By-Product Coke Manufacturing	222
Table A-14:	Illinois Emission Factors Used for Copper Smelting	
Table A-15:	Illinois Emission Factors Used for Iron Production	
Table A-16:	Illinois Emission Factors Used for Steel Production	223
Table A-17:	Illinois Emission Factors Used for Lead Production	223
Table A-18:	Illinois Emission Factors Used for Secondary Copper/Brass	223
Table A-19:	Illinois Emission Factors Used for Gray Iron Foundries	223
Table A-20:	Illinois Emission Factors Used for Secondary Lead	
Table A-21:	Illinois Emission Factors Used for Lead Battery Manufacture	224
Table A-22:	Illinois Emission Factors Used for Steel Foundries	
Table A-23:	Illinois Emission Factors Used for Secondary Zinc	224
Table A-24:	Illinois Emission Factors Used for Asphaltic Concrete	
Table A-25:	Illinois Emission Factors Used for Concrete Batching	
Table A-26:	Illinois Emission Factors Used for Incineration	
Table B-1:	Lake County IN, Emissions by SIC for Sources <25 tons/year	
Table B-2:	Porter County IN, Emissions by SIC for Sources <25 tons/year	
Table C-1:	Kenosha County WI, Emissions by SIC for Sources	
Table C-2:	Milwaukee County WI, Emissions by SIC for Sources	
Table C-3:	Racine County WI, Emissions by SIC for Sources	
Table C-4:	Summary: Kenosha, Milwaukee, and Racine County, WI, Totals	
Table E-1:	Carcinogenicity Ratings for Target Compounds Included in the	
	Regional Toxic Air Emissions Inventory Based on the U.S. EPA's	
	Integrated Risk Information System (IRIS) Database	294
	l int of Figures	

Figure 1-1:	Southwest Lake Michigan Pilot Study Area	. 1
Figure 3-1:	Major Steps and Checkpoints in the Regional Inventory Development Effort as	
	Stipulated in the Air Toxics Emissions Inventory Protocol for the Great Lakes	
	States	12
Figure 4-1:	Hierarchy of POM Compounds in the Target Compounds List	
	of the Regional Air Toxic Emissions Inventory	17
Figure 4-2:	Design of the RAPIDS System	19
Figure 4-3:	Sample RAPIDS Emissions Estimation Screen	21
Figure 4-4:	RAPIDS Data Flow	22
Figure 4-5:	Comparison of Fixed and Flexible Attribute Approaches to Data Storage	23
Figure 4-6:	Arsenic; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	73
Figure 4-7:	Benz(a)anthracene; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	74
Figure 4-8:	Benzo(a)pyrene; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	75
Figure 4-9:	Cadmium; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	76
Figure 4-10:	Carbon Tetrachloride; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	77
Figure 4-11:	Chromium; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	78
Figure 4-12:	Chromium Hexavalent; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	79
Figure 4-13:	Chrysene; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	80
Figure 4-14:	Cobalt; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	81
Figure 4-15:	Copper; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	82
Figure 4-16:	1,2 Dichloroethane; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	83
Figure 4-17:	Ethylbenzene; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	84
Figure 4-18:	Fluoranthene; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	85
Figure 4-19:	Lead; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	86
Figure 4-20:	Manganese; Estimated Emissions from Small Point and Area Sources	
	in the Southwest Lake Michigan Study Area, 1993	87

List of Figures

(continued)

Figure 4-21:	Mercury; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	88	
Figure 4-22:	Methylene Chloride; Estimated Emissions from Small Point and Area Sources		
_	in the Southwest Lake Michigan Study Area, 1993	89	
Figure 4-23:	Naphthalene; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	90	
Figure 4-24:	Nickel; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	91	
Figure 4-25:	Phenol; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	92	
Figure 4-26:	PCB; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	93	
Figure 4-27:	PCDD; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	94	
Figure 4-28:	PCDF; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	95	
Figure 4-29:	PAH; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	96	
Figure 4-30:	POM; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	97	
Figure 4-31:	TCDD 2,3,7,8; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	98	
Figure 4-32:	TCDF 2,3,7,8; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	99	
Figure 4-33:	Tetrachloroethylene; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	100	
Figure 4-34:	Trichloroethene; Estimated Emissions from Small Point and Area Sources		
		101	
Figure 4-35:	1,1,1 Trichloroethane; Estimated Emissions from Small Point and Area Sources		
	in the Southwest Lake Michigan Study Area, 1993	102	
Figure 5-1:	Sample RAPIDS QC Checker Screen	107	
Figure 5-2:	Sample AIRS Conversion Screen	108	

Acronyms and Abbreviations

ACFM Actual Cubic Feet per Minute

AIRS Aerometric Information Retrieval System

AMS Area and Mobile Source

As Arsenic

ASCII American Standard Code for Information Interchange

BTU British Thermal Unit

CAA Clean Air Act

CAERS Computerized Annual Emission Reporting System, Illinois

CARB California Air Resources Board

Cd Cadmium
Co Cobalt
Cr Chromium
Cu Copper

EET Emission Estimating Techniques
EIS Emission Inventory System
ESP Electrostatic Precipitator

FIRE Factor Information Retrieval System (Version 3.0)
FESOP Federally Enforceable State Operating Permit
GEMAP Geocoded Emissions Modeling and Projections

GLC Great Lakes Commission

GLEI Great Lakes Emissions Inventory
GLIN Great Lakes Information Network

GLNPO Great Lakes National Program Office, U.S. Environmental Protection Agency

GLPF Great Lakes Protection Fund HAP Hazardous Air Pollutant

Hg Mercury HP Horsepower

IDEM Indiana Department of Environmental Management

IEPA Illinois Environmental Protection Agency

IJC International Joint Commission
IMS Information Management System

IPP Inventory Preparation Plan

IRIS Integrated Risk Information System, U.S. EPA

LAN Local Area Network

MACT Maximum Achievable Control Technology

Mn Manganese

MSDS Material Safety Data Sheet

NESHAP National Emissions Standards for Hazardous Air Pollutants

Ni Nickel

NO_v Nitrogen Oxides

ORCIS Ozone Regional Computer Inventory System, Illinois

Acronyms and Abbreviations

(continued)

PAH Polycyclic Aromatic Hydrocarbon

Pb Lead

PC Personal Computer

PCB Polychlorinated Biphenyls

PCDD Total Polychlorinated Dibenzodioxins PCDF Total Polychlorinated Dibenzofurans

PERC Perchloroethylene PM Particulate Matter

POM Polycyclic Organic Matter

POTW Publicly Owned Treatment Works QA/QC Quality Assurance/Quality Control

RAPIDS Regional Air Pollutant Inventory Development System

SCC Source Classification Code SIC Standard Industrial Classification

SSD Source Summary Database

STEPS State Environmental Programs Systems

SWLM Southwest Lake Michigan

TANKS Storage Tank Emissions Software
TCDD 2,3,7,8-tetrachlorodibenzo-p-dioxin
TCDF 2,3,7,8-tetrachlorodibenzo-furan

TCE Trichloroethylene TPY Tons per year

TRI Toxic Release Inventory

U.S. EPA United States Environmental Protection Agency

VOC Volatile Organic Compound VOM Volatile Organic Material

WDNR Wisconsin Department of Natural Resources

Preface

The Southwest Lake Michigan Pilot Study represents a unique milestone in the continuing effort to quantify and manage the toxic air emissions which impact the waters of the Great Lakes Basin. Three Great Lakes states, Illinois, Indiana, and Wisconsin, cooperated in compiling this emissions inventory as part of a program to quantify toxic air emissions from small sources in major urban areas. The pilot study provided the first practical test of processes, procedures, and systems which the states have been developing over the last several years to ensure that this, and subsequent, regionwide inventories, are accurate and consistent from one state to another.

The governors of the eight Great Lake states established the framework for reaching this milestone when they signed the Toxic Substances Control Agreement in 1986. This agreement recognized the need for coordinating regional action to quantify and control toxic pollutants entering the Great Lakes system. Since 1989, the Great Lakes states and the Province of Ontario, Canada have been working together through the Great Lakes Commission to develop a regional database of air toxic emissions data and estimates.

The U.S. EPA funded this pilot study to help meet the requirements of Sections 112(c)(6), 112(k), and 112(m) of the Clean Air Act, as amended in 1990. Section 112(k) requires U.S. EPA to identify "not less than 30 hazardous air pollutants which, as a result of emissions from area sources, present the greatest threat to public health in the largest number of urban areas." The categories of area sources that contribute 90 percent of the emissions of each of the 30 or more hazardous air pollutants must then be regulated by U.S. EPA by the year 2000. U.S. EPA must also establish a National Strategy which reduces the public health risks associated with such source categories by not less than 75 percent in the incidence of cancer attributable to emissions from such sources.

While we believe the air toxic emission estimates contained in the report for the Chicago, Gary, and Milwaukee urban areas represent the best single compilation of such estimates, the pilot study has also illustrated the limitations which still exist in making such estimates. The results should therefore be viewed as a first step for use by policy-makers and others involved in air quality management. These data can support regulatory decisions if used in conjunction with other sources of quality-assured data.

The Great Lakes states, along with the Great Lakes Commission, are now working to compile an eight-state air toxic inventory using the experience of the pilot study to improve their efforts. The full eight-state inventory, using calendar year 1993 data, is expected to be completed in late summer, 1996. Through this continuing effort, the mechanism has been established to compile and maintain an inventory which will continue to improve in quality until it will support sound regulatory decisions.

Bharat Mathur Chief Bureau of Air Illinois EPA Felicia R. George Assistant Commissioner Office of Air Management Indiana DEM Donald F. Theiler
Director
Bureau of Air Management
Wisconsin DNR

Acknowledgments

The Southwest Lake Michigan Urban Areas Toxic Air Emissions Inventory Pilot Study has been a challenging endeavor for all involved. As a ground breaking effort to develop a regional inventory of toxic air emissions, a multitude of complex issues had to be resolved to ensure that the priorities of the states and federal government were adequately addressed.

This unique effort was developed under the leadership of Dave Kolaz, chair of the Steering Committee for the Great Lakes Regional Air Toxics Inventory Project, and Carol Ratza, project manager, Great Lakes Commission. Emission inventory specialists from the pilot study states, as well as staff from the other Great Lakes states, U.S. EPA and the province of Ontario worked together closely, making the study a team effort. The primary staff involved in developing the pilot study, and their roles, are listed below.

Southwest Lake Michigan Pilot Study Subcommittee

Dave Kolaz Barry Titus

Illinois Environmental Protection Agency Indiana Department of Environmental Management

Buzz Asselmeier Orlando Cabrera-Rivera

Illinois Environmental Protection Agency Wisconsin Department of Natural Resources

Gary Baker John Shenot

Michigan Department of Environmental Quality Wisconsin Department of Natural Resources

Carol Ratza Great Lakes Commission

Subcommittee Observer Agencies

Chun Yi Wu Peter Wong

Minnesota Pollution Control Agency Ontario Ministry of Environment and Energy

Cathy Tran Dr. Suzanne King Minnesota Pollution Control Agency U.S. EPA Region 5

The Southwest Lake Michigan Pilot Inventory was created by:

Buzz Asselmeier, Illinois Environmental Protection Agency Susan Bem and Chris Hammack, Indiana Department of Environmental Management Orlando Cabrera-Rivera, John Shenot, Keith Warnke and Richard Moran, Wisconsin Department of Natural Resources

RAPIDS Software Development:

Leonard Bruckman et al, Radian Corporation

This report was written, compiled and reviewed by all of the above project participants with additional editorial and regional report compilation support provided by Great Lakes Commission staff members Mike Conley, Matt Doss and Celeste Whiting.

Dedication

This report is dedicated to the memory of Tom Lahre. As the primary contact to the pilot study from the Urban Area Sources Program of the U.S. Environmental Protection Agency, Tom worked closely with the state subcommittee members and Great Lakes Commission staff up until his death in September 1995. He was a dedicated professional and a good friend to us all. We miss him and hope that we have lived up to the high professional standards that he set for himself and for those with whom he worked.

Executive Summary

The purpose of the Southwest Lake Michigan (SWLM) Pilot Study was to a) inventory small point and area sources of toxic air emissions from the combined urban areas of Chicago, Gary and Milwaukee (see Figure 1-1, page 1); b) test the *Air Toxics Emissions Inventory Protocol for the Great Lakes States;* and c) design and test an automated emissions estimation and data management system that could be used in later years in developing larger, multistate, Great Lakes regionwide inventories.

Importantly, emissions from "major sources," as defined by the Clean Air Act, were not inventoried and estimated and are therefore not documented in the regional summary. Consequently, the ratio of area to major source emissions in the study area is not available and the tables and charts provided herein should not be construed to represent an estimate of total emissions of the subject hazardous air pollutants released in the study area. Under the terms of the Clean Air Act (CAA), which defines major sources in terms of quantity, the sources inventoried in the SWLM study are accurately described as "area sources."

The SWLM study began in October 1993 with primary funding provided by the U.S. Environmental Protection Agency (U.S. EPA). The study built upon four previous years of effort by the Great Lakes states, funded by the states themselves through the Great Lakes Protection Fund.

This report is but one of six products of the SWLM study. The complete product package includes:

This report, titled *The Southwest Lake Michigan Pilot Study: Developing an Inventory of Toxic Air Emissions from Area Sources in the Chicago, Milwaukee and Gary Urban Areas, 1993*;

Regional Air Pollutant Inventory Development System (RAPIDS) client/server software;

The Southwest Lake Michigan Urban Area Source Inventory;

Air Toxics Emissions Inventory Protocol for the Great Lakes States;

Improved Great Lakes state air emissions inventory systems for criteria and toxic air pollutants; and

Demonstration of the cost effective and time efficient use of the Internet as an aid to solving regional environmental problems and, introduction of the concept and successful demonstration of the feasibility of states using client/server technology via the Internet to transmit and exchange environmental data with other states, federal agencies and industry.

The three states that conducted the SWLM study (Illinois, Indiana and Wisconsin) believe that the air toxic emission estimates contained in this report (and in the Southwest Lake Michigan Urban Area Source Inventory housed by the U.S. EPA Great Lakes National Program Office) for the Chicago,

Gary and Milwaukee urban areas represent the best single compilation of such estimates. The scope of the project did not allow the states to undertake a massive discovery effort; instead, the states used available 1993 calendar year process data, emission factors and reported information. The SWLM study objective was to enhance current inventory capabilities, resolve procedures and protocol issues across several states, and develop and test an automated emission estimation and inventory system. In the process, the urban area source inventory for the SWLM study area was compiled.

In brief, the pilot study should be viewed as an initial effort to bridge the gap between the *science* of inventorying toxic air emissions and the public policy *debate* concerning how these emissions affect human health and the environment and how they should be addressed. Follow-up by U.S. EPA and the states is necessary to make further progress toward meeting the goals of Section 112 of the CAA. The SWLM pilot study states recommend that regulatory decisions not be based on this data unless more compelling research is completed or accessed to warrant such action.

The following are the specific sections of the CAA, as amended in 1990, addressed by the SWLM study:

Section 112(c)(6) Specific Pollutants: Each of the 112(c)(6) pollutants was targeted in the SWLM small point and area source emissions inventory. The objective of this study, in terms of Section 112(c)(6) of the CAA, was to locate small point and area sources of these toxic compounds in the 12-county area. The summary regional tables and charts (beginning on page 28) highlight these emissions and respective area sources. Section 5, *Results*, provides suggested refinements to the procedures listed in the *Air Toxics Emissions Inventory Protocol for the Great Lakes States* in order to more accurately estimate total emissions of Polycyclic Organic Matter (POM) and related pollutants.

Section 112(k) Area Source Program: The objective of the SWLM pilot study was to provide the mechanism, procedure and the first compilation of data on emissions from area sources of a targeted list of hazardous air pollutants, including those identified in Section 112(c)(6) of the CAA. The study sought to provide the best compilation of such data for calendar year 1993 emissions from small point and area sources. Section 5 of this report presents the best currently available estimates of area sources for the inventoried toxic air pollutants for calendar year 1993 for the Chicago, Milwaukee and Gary urban areas. This project begins a long-term state and federal effort to categorize emissions from various area sources (and major sources) in the Great Lakes region. The states believe this work will provide the strongest foundation upon which the U.S. EPA can build the national strategy to reduce urban area toxic air emissions as outlined in Section 112(k)(3) of the CAA.

The study focused on the identification of small point and area source categories that contribute the most to the total emissions of hazardous air pollutants listed in Table 2-1. The SWLM study concentrated on locating significant sources not currently regulated under the CAA. These sources include many traditionally unregulated sites with relatively small gas-fired, coal-fired, or oil-fired boilers; asphalt and concrete plants; industries dealing with primary metals (including zinc, aluminum and iron), or secondary metals (primarily used in the processing of refined metals); cultured marble companies; woodburning stoves and fireplaces; non-road engines; and generally, any facility with an incinerator. The focus was on finding many small sources within one county or urban area that collectively release large amounts of one or more toxic air pollutants of concern.

Section 112(m) Great Waters and the Great Lakes Toxic Substances Control Agreement: The Great Lakes states made significant progress toward meeting the goals of the governors' agreement and CAA Section 112(m) by developing the Regional Air Pollutant Inventory Development System (RAPIDS) and testing the *Air Toxics Emissions Inventory Protocol for the Great Lakes States*. The RAPIDS software, and the accompanying protocol will be used by all eight Great Lakes states in future years to jointly conduct point and area source inventories of the 49 target compounds identified in Table 2-1.

The Air Toxics Emissions Inventory Protocol for the Great Lakes States, finalized in June 1994, provides instructions for the states to follow to ensure the completeness, accuracy, consistency and quality of the regional toxic emissions inventory. Each state prepared its portion of the SWLM pilot inventory in the manner outlined in the protocol, and provided a quality assurance check on their state-specific emissions data and estimates to ensure the highest possible quality database.

Rather than comparing one state's emissions against another state's results, the focus of the pilot study was to prepare a reliable and technically accurate inventory for the southwest Lake Michigan region as a whole, and to outline areas where improvements are needed in overall methodology and implementation.

Development of RAPIDS has been the key to the effort to develop a comprehensive, accurate, and consistent urban area air toxic emissions inventory across three states.

As a multistate, regional effort, a high level of coordination and communication was necessary to ensure consistency among the three states in terms of data management, methodology, calculation methods, and other issues. To facilitate the necessary communication on these issues, a Southwest Lake Michigan Pilot Study Subcommittee was established by the Great Lakes Commission's Regional Emission Inventory of Toxic Air Contaminants Steering Committee. During the course of the SWLM study, the subcommittee communicated via daily e-mail exchanges, conference calls on a weekly or biweekly basis, and monthly or bimonthly in-person meetings to oversee contractor development of the inventory software, and to resolve outstanding issues and inconsistencies among the three states contributing to the pilot study.

During the course of this study, the Southwest Lake Michigan Subcommittee worked closely with the project software development contractor, Radian Corporation, to develop and test RAPIDS. The effort represents the first attempt to prepare software for estimating toxic pollutant emissions on a multistate basis. RAPIDS is a client/server system consisting of an ORACLE back-end database designed using ORACLE CASE tools, and a "suite" of front-end applications developed using various software tools (primarily PowerBuilder and SAS). The software takes full advantage of new Internet/Great Lakes Information Network (GLIN) connections between the states, Great Lakes Commission, and the U.S. EPA GLNPO office in Chicago.

Finally, a Quality Assurance/Quality Control (QA/QC) Committee was formed to review the pilot study report, establish QA/QC criteria for use by the three states, and ensure the report provides an accurate and useful summary of toxic air emissions at the regional level.

The tables and charts presented in Section 4, *Results*, provide the results of the regional inventory for the southwest Lake Michigan pilot study area. It is important to note that, as a pilot study, the subcommittee has refrained from interpreting the results or from drawing major conclusions that might have policy implications. In addition, the subcommittee finds that, beyond the actual results,

the process of compiling the regional inventory has, itself, proven extremely valuable as a means of resolving the many technical, methodological, and policy-related issues that impact a multistate, regional toxic air emissions inventory. The U.S. EPA GLNPO office serves as the repository for the Southwest Lake Michigan Urban Area Source Inventory. Small point and area source toxic air emissions data collected by Illinois, Indiana and Wisconsin reside in the repository. Internet access to the inventory, using the RAPIDS client software, is available to select researchers.

One important outcome is that the SWLM pilot study illustrated the serious shortcomings that still exist in regional emissions estimates (see regional results page 28), and suggested necessary steps that must be made to ensure data quality for estimating various pollutant groupings (see Section 5, *Conclusions*). A significant contribution to the goals of CAA section 112(c)(6) relates to the identified need for better methodology for use in next year's full eight-state regional inventory.

The SWLM pilot study emissions inventory for small point and area sources in the Chicago, Milwaukee and Gary urban areas are summarized in the following tables and figures beginning on page 28:

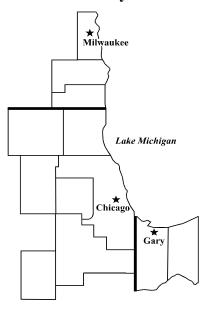
Table 4-1: Regional Summary of Pollutant Emissions, by State and Region, for all Inventoried Sources in the Southwest Lake Michigan Pilot Project Study Area, 1993.

Table 4-2: Regional Toxic Air Emissions by Inventoried Source for the Southwest Lake Michigan Pilot Project Study Area, 1993.

Figures 4-6 through 4-35: Estimated Emissions from Small Point and Area Sources in the Southwest Lake Michigan Study Area, 1993.

Working together on this pilot project, the Great Lakes states, and particularly the lead states of Illinois, Indiana, Wisconsin and Michigan, have set a national example of cooperative emissions inventory development across states. The efforts the state air agencies are undertaking together in this project, supported by U.S. EPA, are unprecedented.

An important result from the SWLM pilot inventory is that the states have learned how to conduct a multistate inventory and are now poised to prepare a successful regionwide, eight-state effort.


SOUTHWEST LAKE MICHIGAN PILOT STUDY

The purpose of the Southwest Lake Michigan (SWLM) Pilot Study was to inventory small point and area sources of toxic air emissions from the combined urban areas of Chicago, Gary and Milwaukee (see Figure 1-1) and, in the process, to test the *Air Toxics Emissions Inventory Protocol for the Great Lakes States* and to design and test an automated emissions estimation and data management system that could be used in later years in developing larger, multistate Great Lakes regionwide inventories.

Importantly, this study did not inventory major sources of toxic air emissions in the urban study area. Emissions from "major sources," as defined by the Clean Air Act (CAA), were not estimated, and are not documented in the regional summary; consequently, the ratio of area to major source emissions in the study area is not available and the tables and charts provided herein should not be construed to represent an estimate of total emissions of the subject hazardous air pollutants released in the study area.

The SWLM pilot study began in October 1993 with primary funding provided by the U.S. Environmental Protection Agency (U.S. EPA) and built upon four previous years of effort by the Great Lakes states, funded by the Great Lakes states themselves through the Great Lakes Protection Fund. In addition, the project benefited from substantial in-kind contributions of staff time by the lead states of Illinois, Indiana, Michigan and Wisconsin and federal collaborators at U.S. EPA. Project oversight was provided by the Great Lakes Commission Regional Emission Inventory of Toxic Air Contaminants Steering Committee (see Appendix F), working together under the auspices of the Great Lakes Commission. Project management was provided by Great Lakes Commission, an Ann

Figure 1-1: SWLM Pilot Study Area

Arbor, Michigan-based compact agency of the eight Great Lakes states (Illinois, Indiana, Michigan, Minnesota, Ohio, New York, Pennsylvania and Wisconsin).

PRODUCTS

This report is but one of six products of the SWLM study. The complete product package includes:

- 1. This report, The Southwest Lake Michigan Pilot Study: Developing an Inventory of Toxic Air Emissions from Area Sources in the Chicago, Milwaukee and Gary Urban Areas, 1993.
- 2. Regional Air Pollutant Inventory Development System (RAPIDS) client/server software for estimation of toxic air emissions from point and area sources. RAPIDS software and

documentation may be downloaded from the Internet at the site: ftp.great-lakes.net/pub/RAPIDS/production/.

- 3. The Southwest Lake Michigan Urban Area Source Inventory. The U.S. EPA Great Lakes National Program Office (GLNPO) serves as the inventory repository. Internet access to the inventory, using the RAPIDS client software, is available to approved state and federal employees.
- 4. Air Toxics Emissions Inventory Protocol for the Great Lakes States. The SWLM project tested the procedures outlined in this 1994 toxic air emission estimation protocol document. The full protocol and the Quality Control/Quality Assurance plan are available at http://www.great-lakes.net/partners/glc/projects/air/protocol/protohome.html. The protocol is a living document; additions and refinements to the protocol as a result of the SWLM project are in progress. The protocol will be used to guide the efforts of all eight Great Lakes states in 1995-96 as they prepare the first full statewide toxic air emissions point and area source inventories and populate the regional repository. Further additions and refinements may be expected after the first full eight-state inventory.
- 5. Improved state air emissions inventory systems for criteria and toxic air pollutants. At least two of the region's states are now adapting part or all of the state-of-the-art RAPIDS client/server software developed during the SWLM study to serve as their in-state toxic and criteria pollutant emission estimation and inventory system for major sources and area sources. In addition, several other states are using various RAPIDS modules as an adjunct to existing or planned systems to house the state toxic air emissions inventory.
- 6. Finally, perhaps the most important product of this effort has been the jump start that the Great Lakes region's state, provincial, federal and regional project partners have gained in the understanding and use of client/server and Internet communications technology. The SWLM project successfully demonstrated the cost effective and time efficient use of the Internet as an aid to solving regional environmental problems. With the assistance of the U.S. EPA GLNPO office, the project introduced the concept and successfully demonstrated the feasibility of states using client/server technology via the Internet to transmit and exchange environmental data with other states, federal agencies and industry.

DEFINITIONS

Definitions of a major source and an area source as presented in CAA, Section 112 Hazardous Air Pollutants, are inserted here to assist the reader's understanding of the effort undertaken by the states that conducted the SWLM study.

"Section 112. (a) (1) Major source. - The term "major source" means any stationary source or group of stationary sources located within a contiguous area and under common control that emits or has the potential to emit considering controls, in the aggregate, 10 tons per year or more of any hazardous air pollutant or 25 tons per year or more of any combination of hazardous air pollutants. The Administrator may establish a lesser quantity, or in the case of radio nuclides different criteria, for a major source than that specified in the previous sentence, on the basis of the potency of the air pollutant, persistence, potential for bioaccumulation, other characteristics of the air pollutant or other relevant factors.

"Section 112. (a) (2) Area source. - The term "area source" means any stationary source of hazardous air pollutants that is not a major source. For purposes of this section, the term "area source" shall not include motor vehicles or non-road vehicles subject to regulation under title II.

Under the terms of the CCA, which defines major sources in terms of quantity, the sources inventoried in the SWLM study are accurately described as "area sources." However, emissions inventory specialists sometimes use the terms point and area source in a different way: A point source is one located at a discrete location where emissions estimates can be based on activity at that location. An area source is a *type* of source where inventory specialists assume a geographic area contains several or many similar sources, and emissions are estimated based on activity within the geographic area (usually a county), rather than at discrete points.

Generally, this report follows this convention, and refers to sources as either "small point" or "area sources" to provide a further level of refinement to aid in understanding the size and type of sources inventoried. Emission estimates generated for facilities were grouped by Standard Industrial Classification (SIC) codes and labeled as emissions from "small point sources." The protocol refers to such sources as "facility sources," regardless of size. Source categories, such as residential woodburning and non-road engines, are referred to as "area sources" by the states in the protocol and retain that classification in this report; these sources are referred to by name (i.e., woodburning for residential woodburning) in the attached regional tables and charts, or, when necessary, generically, as "area sources."

2. Objectives

The federal incentive for the project was to assist the U.S. EPA in meeting requirements of Section 112 of the Clean Air Act (CAA). This project report documents substantive progress toward meeting the urban area goals of the CAA Sections 112(c)(6) and 112(k) and the Great Lakes goals of Section 112(m).

URBAN AREA SOURCE EMISSIONS ESTIMATION GOAL UNDER THE CLEAN AIR ACT

Sections 112(c)(6) and 112(k) of the CAA require U.S. EPA, through its Urban Area Source Program, to identify "not less than 30 hazardous air pollutants which, as a result of emissions from area sources, present the greatest threat to public health in the largest number of urban areas." U.S. EPA also must list and regulate the categories and subcategories of area sources that contribute 90 percent of the emissions of each of the 30 or more hazardous air pollutants. Furthermore, U.S. EPA must develop a national strategy to reduce emissions of hazardous air pollutants emitted by area sources, as well as reduce by 75 percent the incidence of cancer attributable to such area sources.

The three states that conducted the SWLM study believe that the air toxic emission estimates contained in this report for the Chicago, Gary and Milwaukee urban areas represent the best single compilation of such estimates. The scope of the project did not allow the states to undertake a massive discovery effort; instead, the states used available calendar year 1993 process data, emission factors and reported information. It was the objective of the SWLM study to enhance current inventory capabilities, resolve procedures and protocol issues across several states and develop and test an automated emission estimation and inventory system, and, in the process, compile the urban area source inventory for the SWLM study area.

In short, the pilot study should be viewed as an initial effort to bridge the gap between the *science* of inventorying toxic air emissions and the public policy *debate* concerning how these emissions affect human health and the environment and how they should be addressed. Follow-up by U.S. EPA and the states themselves is necessary to make further progress toward meeting the goals of Section 112 of the CAA. The pilot study states recommend that regulatory decisions not be based on this data unless more compelling research exists to warrant such action.

No effort was made to develop a ratio of the total emissions from small point and area sources to total emissions from major sources. Emissions from "major sources" were not estimated and are not documented in the regional summary; consequently the ratio of area to major source emissions in the SWLM study area is not available, and the tables and charts provided herein should not be construed to represent an estimate of total emissions for hazardous air pollutants released in the study area.

Section 112(c)(6) Specific Pollutants

Section 112(c)(6) specified the need to list categories and subcategories of sources emitting the following pollutants: alkylated lead compounds, polycyclic organic matter (POM), hexachlorobenzene, mercury, polychlorinated biphenyls (PCBs), 2,3,7,8-tetrachlorodibenzofurans (TCDF) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD).

Each of the 112(c)(6) pollutants was targeted in the SWLM small point and area source emissions inventory. Importantly, this study did not inventory major sources of these toxic compounds or others in the urban study area. The objective of this study, in terms of the pollutants referenced in Section 112(c)(6), was to locate small point and area sources of these toxic compounds in the 12-county area. The *Results* section provides suggested refinements to the procedures listed in the *Air Toxics Emissions Inventory Protocol for the Great Lakes States* in order to more accurately estimate total emissions of POM and related pollutants.

Section 112(k) Area Source Program

Section 112(k) of the CAA authorizes the U.S. EPA to conduct, after consultation with state and local air pollution control officials, a program of research with respect to sources of hazardous air pollutants in urban areas that shall include analysis to characterize the sources of such pollution with a focus on area sources and the contribution that such sources make to public health risks from hazardous air pollutants. This work is seen as preliminary to the development of a national strategy to reduce emissions in urban areas from area sources of hazardous air pollutants and to gain an equivalent reduction in public health risks associated with such sources.

The objective of the SWLM pilot study was to provide the mechanism, procedure and the first compilation of data on emissions from area sources of a targeted list of hazardous air pollutants, including those identified in Section 112(c)(6) of the CAA. The study aimed to provide the best compilation of such data for calendar year 1993 emissions from small point and area sources. The *Results* section of this report presents the best currently available estimates of area sources for the inventoried toxic air pollutants for calendar year 1993 in the Chicago, Milwaukee and Gary urban areas. The project begins a long-term state and federal effort to categorize emissions from various area sources (and major sources) in the Great Lakes region. An objective for the states in the SWLM study is to work cooperatively with the U.S. EPA to enhance and stabilize the regional inventory software and protocol developed under this effort, and as a consequence, to make it possible for the U.S. EPA to use following years' eight-state emissions data for risk assessment purposes in the future.

The states believe that this work will provide the strongest foundation upon which the U.S. EPA can build the national strategy to reduce urban area toxic air emissions as outlined in Section 112(k)(3) of the CAA.

Further clarification of objectives and descriptions of inventoried sources and estimation procedures used to estimate CAA "area source" emissions by the three states are provided in the *Conclusions* section and in the state summaries provided in appendices A through C.

1986 GREAT LAKES GOVERNORS' TOXIC SUBSTANCES CONTROL AGREEMENT AND CAA SECTION 112(m)

The Great Lakes region had an additional incentive to undertake the SWLM project. The development of multistate client/server toxic air emission inventory software and procedures goes a long way toward meeting provisions of the Council of Great Lakes Governors' Toxic Substances Control Agreement (governors' agreement) of 1986, which called on the states to jointly identify sources of persistent toxic substances contaminating the Great Lakes. Similar Great Lakes-specific goals were promulgated under Section 112(m) of the CAA. The fact that the Great Lakes states and the U.S. federal government realized the convergent nature of these two initiatives and tied them together into a jointly funded project to meet the needs of both levels of government is in itself an achievement. The pilot study provided a unique opportunity to simultaneously support both regional and national air quality management efforts. This report documents substantive progress toward meeting both governors' agreement and Section 112(m) goals.

Great Lakes States' Goal: Cooperatively Quantifying Sources of Toxic Substances Entering the Great Lakes

In 1986 the governors of the eight Great Lakes states signed an agreement that stated, in part:

"Toxic contaminants enter the Great Lakes Basin from a wide variety of sources including industrial discharges, nonpoint sources and atmospheric deposition. It is acknowledged that the atmosphere is a significant source of the total balance of pollutants entering the Great Lakes system. However, in many cases additional research is needed to quantify sources of toxic substances transported through the atmosphere.

"Therefore:

- "1. The signatory States agree to cooperate in quantifying toxic substances loadings originating from all sources, with the purpose of developing the most environmentally and economically sound control programs.
- "2. The signatory States agree to consider the effects of airborne pollutants on human health and aquatic life when setting air emission standards and granting air emission permits, and to better integrate their respective air and water programs to address atmospheric deposition affecting the lakes.
- "3. The signatory States endorse the work of the atmospheric component of the Great Lakes international Surveillance Plan and its increased focus on monitoring toxic substances.

In 1988 this agreement was further ratified by the provinces of Ontario and Québec. Since that time, the Great Lakes states have worked cooperatively to develop a common method to quantify emissions of toxic air pollutants in the region. Ontario has participated fully in discussions, but is not yet prepared to undertake a province-wide air toxics inventory. Québec has not participated in the project to date.

Great Waters Goal: Identifying Sources of Atmospheric Deposition to the Great Lakes

The goal of Section 112(m) of the CAA, Atmospheric Deposition to Great Lakes and Coastal Waters, is to conduct a program to identify and assess the extent of atmospheric deposition of hazardous air pollutants (and at the discretion of the administrator, other air pollutants) to the Great Lakes, the Chesapeake Bay, Lake Champlain and coastal waters. As part of this program, the U.S. EPA is charged with investigating the source or sources of any pollution to the Great Lakes which is attributable to atmospheric deposition.

The Great Lakes states made significant progress toward meeting the goals of the governors' agreement and CAA Section 112(m) by developing the Regional Air Pollutant Inventory Development System (RAPIDS) and testing the *Air Toxics Emissions Inventory Protocol for the Great Lakes States*. The RAPIDS software, and the accompanying protocol will be used by all eight Great Lakes states in future years to conduct joint point and area source inventories of the 49 target compounds identified in Table 2-1. RAPIDS data will be made available to state and U.S. EPA researchers conducting analysis of the effects of atmospheric deposition of air pollutants on the Great Lakes. In addition, other (non-Great Lakes) states participating in the Great Waters Program will be offered copies of the RAPIDS software and protocol for their use in estimating toxic air emissions impacting the Chesapeake Bay, Lake Champlain and the coastal waters of the United States. In addition, the states of Texas and Louisiana have followed development of the project to date and have access to the software and protocol.

The *Results* section of this report briefly outlines the point and area source emission estimation and inventory capabilities of RAPIDS.

TARGET COMPOUNDS

The study focused on the identification of small point and area source categories that contribute the most to the total emissions of hazardous air pollutants listed in Table 2-1. The list of target compounds was developed over a period of five years, and is based on several criteria. The list includes pollutants identified in the Great Lakes Basin by the International Joint Commission on the basis of toxicity to aquatic life, carcinogenicity and toxic effects on human health and bioaccumulative potential. Table E-1 in Appendix E lists the carcinogenicity ratings for the target compounds based on U.S. EPA's Integrated Risk Information System Database. Pollutants have been added to the list based on the suggestions of individual Great Lakes states; the U.S. EPA Office of Air Quality Planning and Standards; Factor Inventory Retrieval (FIRE) system developers; U.S. EPA Great Waters/Section 112(m) and Urban Area Source 112(c)(6) program staff; and from the list of pollutants identified in Section 112(c)(6) of the CAA. The current list of 49 pollutants should not be considered final. There are procedures in the protocol for states, and others, to suggest the addition or deletion of compounds. Upon consensus approval of the full eight-state steering committee, the list may be amended. See the *Conclusions* section for suggested amendments to the list generated by the SWLM study.

Table 2-1: List of Target Compounds for the Regional Toxic Air Emissions Inventory

		Toxic List			
	Pollutant	¹ Great Waters	² Great Lakes Commission	³CAA 112(c)(6)	CAS#
1	Arsenic	Yes	Yes		7440-38-2
2	Atrazine	Yes			1912-24-9
3	Benz(a)anthracene (1,2-Benz(a)anthracene Benzo(a)anthracene)		Yes		56-55-3
4	Benzo(a)pyrene	Yes	Yes		50-32-8
5	Cadmium	Yes	Yes		7440-43-9
6	Carbon tetrachloride	Yes	Yes		56-23-5
7	Chlordane	Yes			57-74-9
8	Chromium	Yes	Yes		7440-47-3
9	Chrome VI		Yes		18540-29-9
10	Chrysene (Benz(a)phenanthrene)		Yes		218-01-9
11	Cobalt	Yes			7440-48-4
12	Coke oven emissions	Yes			8007-45-2
13	Copper	Yes			7440-50-8
14	1,2-Dichloroethane		Yes		107-06-2
15	Diethlyhexyl phthalate (Bis(2-ethylhexyl) Phthalate)		Yes		117-81-7
16	Di-n-butyl phthalate		Yes		84-74-2
17	Di-n-octyl phthalate		Yes		117-84-0
18	Dioxins	Yes			
19	Ethylbenzene	Yes			100-41-4
20	Fluoranthene (1,2-Benzacenapthene Benzo(jk)fluorene)		Yes		206-44-0
21	Heptachlor	Yes			76-44-8
22	Hexachlorobenzene	Yes	Yes	Yes	118-74-1
23	Hexachlorobutadiene		Yes		87-68-3
24	Hexachloroethane		Yes		67-72-1
25	Lead	Yes	Yes		7439-92-1
26	Alkylated lead compounds		Yes	Yes	7439-92-1
27	Manganese & compounds	Yes			
28	Mercury	Yes	Yes	Yes	7439-97-6
29	Methoxychlor Dimethoxy-DDT	Yes			72-43-5
30	Methylene Chloride Methane Dichloride Freon 30	Yes			75-09-2
31	Naphthalene		Yes		91-20-3
32	Nickel and compounds Ni carbonyl Ni cyanide NI subsulfide	Yes			13463-39-3 557-19-7 12035-72-2
33	Parathion	Yes			56-38-2
34	Pentachloronitrobenzene (PCNB) (Quintobenzene)	Yes			82-68-8
35	Pentachlorophenol (PCP)	Yes			87-86-5
36	Phenol (Carbolic Acid)	Yes			108-95-2
37	Total polychlorinated biphenyls (PCBs)	Yes	Yes	Yes	1336-36-3

		Toxic List			
	Pollutant	¹ Great Waters	² Great Lakes Commission	³CAA 112(c)(6)	CAS#
38	Total polychlorinated dibenzodioxins (PCDDs)	Yes	Yes		
39	Total polychlorinated dibenzofurans (PCDFs)		Yes		
40	Total polycyclic aromatic hydrocarbons (PAHs)	Yes	Yes		
41	Polycyclic organic matter (POM)	Yes		Yes	
42	2,3,7,8-tetrachlorodibenzo-p- dioxin (TCDD)		Yes	Yes	1746-01-6
43	2,3,7,8-tetrachlorodibenzofuran (TCDF)	Yes	Yes	Yes	51207-31-9
44	Tetrachloroethene (Tetrachloroethylene 1,1,2,2-Tetrachloroethylene Perchloroethylene PERC)		Yes		127-18-4
45	Trichloroethene (Trichloroethylene)		Yes		79-01-6
46	1,1,1-trichloroethane		Yes		71-55-6
47	2,4,5-trichlorophenol		Yes		95-95-4
48	2,4,6-trichlorophenol		Yes		88-06-2
49	Trifluralin (2,6-Dinitro-n,n-dipropyl-4- (trifluoro-methyl) benzenamine)	Yes			1582-09-8

Compounds listed (among others) on U.S. EPA Great Waters Program's list of targeted toxic chemicals.
 Compounds originally targeted by the Great Lakes Commission. The full GLC list now includes all 49 compounds listed above.

^{3.} Compounds identified (among others) in the U.S. Clean Air Act, as amended in 1990 (Section 112 (c)(6)).

3. Methodology

The SWLM study concentrated on locating significant sources not currently regulated under the CAA. These sources include many traditionally unregulated sites with relatively small gas-fired, coal-fired, or oil-fired boilers; asphalt and concrete plants; industries dealing with primary metals (including zinc, aluminum and iron), or secondary metals (primarily used in the processing of refined metals); cultured marble companies; woodburning stoves and fireplaces; non-road engines; and generally, any place with an incinerator. The focus was on finding many small sources within one county or urban area that collectively release large amounts of one or more toxic air pollutants of concern. For detailed discussions of methodology, see appendices A, B and C and the 1994 *Air Toxics Emissions Inventory Protocol* (under separate cover).

AIR TOXICS EMISSIONS INVENTORY PROTOCOL FOR THE GREAT LAKES STATES

The Air Toxics Emissions Inventory Protocol for the Great Lakes States, finalized in June 1994, provides instructions for the states to follow to ensure the completeness, accuracy, consistency and quality of the regional toxic emissions inventory. Each state prepared its portion of the SWLM pilot inventory in the manner outlined in the protocol, and provided a quality assurance check on their state-specific emissions data and estimates to ensure the highest possible quality database.

Inventory completeness, one of the most important objectives of the protocol, has been addressed by identifying all source categories that have the potential to emit one of the target toxic air pollutants within the Great Lake states region. The accuracy of the regional inventory is addressed by using the most recent information available to identify and locate emission sources and estimate emissions. The QA/QC Plan outlines procedures to maximize the quality and accuracy of the regional inventory's data and estimates.

The protocol does not contain specific, detailed information on estimating emissions for each type of device/process expected to be encountered in the Great Lakes region. Instead, acceptable generic emission estimating techniques (EETs) are identified for the emission sources that produce toxic emittants. A generic discussion of each EET and a list of technical references is provided for those who require more detailed information.

U.S. EPA required agencies to prepare Inventory Preparation Plans (IPPs) as part of the 1990 baseline criteria pollutant inventories required under the Clean Air Act, as amended in 1990. The protocol was prepared in partial fulfillment of this requirement. According to the U.S. EPA, the IPP should outline the agency's inventory development effort plan, and present and document the resulting emissions data and estimates. The U.S. EPA recommended that, at a minimum, the IPP include the following information:

definition of the inventory's structure, content and inventory area;

background and basis for the inventory;

identification of the parties responsible for the inventory;

identification of the quality assurance coordinator; and

procedures used to collect data and determine emissions.

The protocol is not intended to replace the IPP, but does include most of the above information. By focusing on the procedures that the participating states must follow to compile their portion of the regional database, the protocol assigns responsibilities and procedures (joint, state, Great Lakes Commission, U.S. EPA GLNPO); outlines procedures to identify and locate emission sources of target compounds; guides selection of specific emission estimation techniques; instructs states on compiling and updating the regional repository at GLNPO; outlines quality assurance/quality control procedures for emission data and estimates; and identifies and explains the full suite of automated tools available for developing the regional inventory (RAPIDS, GLC-FIRE, Version 3.0, and others).

Since the participating states envision that the full eight-state regional database of air toxic emissions data and estimates will be updated periodically, the protocol also provides the procedures to update the regional inventory and an estimated schedule for such updates. Procedures to resolve differences of opinion among the participating states regarding various aspects of the regional inventory development effort are a significant component of the protocol.

Figure 3-1 on the following page outlines the major steps and checkpoints that the protocol stipulates the Great Lakes states follow in developing their portion of the regional inventory. These include the completion of: staff resource development; device/process identification in the study area; and data collection requirements analysis. The data collection, emission calculation and area source reconciliation also must be completed, as well as data entry and pre-upload QA/QC activities. Finally, a successful upload to the regional repository and the Aerometric Information Retrieval System (AIRS) must be accomplished.

Two important issues for the inventory development effort are the appropriate level of detail and the use of facility versus area approach for calculating emissions. For the Great Lakes states regional inventory, the protocol defines the following level of detail as being appropriate for meeting the goals of the project:

Emittants included: Include all target compounds listed in Table 2-1;

Spatial resolution: By county for area sources, and to the nearest 100 meters for facility sources and associated devices;

Temporal resolution: Annual emissions estimates and annual activity data; and

Source/device/process categorization: By the most detailed source/device/process, as identified in U.S. EPA's Source Classification Codes (SCC) and Area and Mobile Source (AMS) coding systems of process codes plus a further breakdown by Standard Industrial Classification (SIC), as appropriate, to better categorize a given source (required to prevent the problem of inconsistent aggregation of sources/devices/processes among the participating states).

Figure 3-1: Major Steps and Checkpoints in the Regional Inventory Development Effort as Stipulated in the *Air Toxics Emissions Inventory Protocol*

The protocol describes the two emission calculation approaches as follows:

- **Facility source approach:** Separately identify each device/process at each facility source and calculate its emissions (often referred to as a facility/point source approach); and
- **Area source approach:** Aggregate all similar or identical device/processes within a defined area and calculate their total emissions directly using the appropriate surrogate activity data (the source in this case is the area in which all of the devices are found, usually an entire county).

The area source approach is generally used for sources that are small and numerous, such as gasoline stations and dry cleaning establishments. These are not included as facility sources because the effort required to gather and estimate emissions for each individual facility is beyond the resources available for inventory development efforts. Some area sources, such as consumer products, have no analog as a facility source.

The protocol refers to certain software tools (e.g. the Regional Air Pollutant Inventory Development System, RAPIDS, discussed below) that can be used to prepare a state or province's portion of the regional inventory. However, the protocol procedures, if followed, will result in emissions data and estimates that are compatible and consistent, whether or not these software tools are used.

DEVELOPING AND TESTING CLIENT/SERVER EMISSION ESTIMATION AND INVENTORY SOFTWARE: RAPIDS

Development of the Regional Air Pollutant Inventory Development System (RAPIDS) has been the key to the effort to develop a comprehensive, accurate and consistent urban area air toxic emissions inventory across three states.

During the course of this study, the Southwest Lake Michigan Subcommittee worked closely with the project software development contractor, Radian Corporation, to develop and test RAPIDS. The effort represents the first attempt to prepare software for estimating toxic pollutant emissions on a multistate basis. RAPIDS is a client/server system consisting of an ORACLE back-end database designed using ORACLE CASE tools, and a "suite" of front-end applications developed using various software tools (primarily PowerBuilder and SAS). The software takes full advantage of new Internet/GLIN connections between the states, the Great Lakes Commission and the U.S. EPA GLNPO office in Chicago.

See section 4, *Results* for discussion on the use of RAPIDS in compiling the SWLM inventory.

COLLECTING AND COMPILING DATA FROM THREE STATES

Emission estimates were based on the best available state inventory data. The data presented represent different levels of emissions reporting requirements and data collection efforts by each of the participating states. If emissions from certain source categories are missing from one state's data, this may reflect varying reporting requirements among the states and not necessarily the absence of those sources within the state. Contact each individual state's quality assurance/quality control representative, listed in Table 3-1 below, for further information. The states promoted consistency

among their respective inventories by following the *Air Toxics Emissions Inventory Protocol for the Great Lakes States* (developed to help the eight Great Lakes states prepare a comprehensive, regional air toxic emissions inventory) and by using emissions factors from FIRE Version 3.0.

Rather than comparing one state's emissions against another state's results, the focus of the pilot study was to prepare a reliable and technically accurate inventory for the southwest Lake Michigan region as a whole and to outline areas where improvements are needed in overall methodology and implementation.

Table 3-1: Personnel Responsible for Pilot Inventory Compilation and Quality Assurance/Quality Control

Role	Illinois	Indiana	Wisconsin
Inventory Development	Buzz Asselmeier Division of Air Pollution Control IL Environmental Protection Agency	Chris Hammack, Susan Bem Office of Air Management IN Dept. of Environmental Management	Orlando Cabrera-Rivera Bureau of Air Management WI Dept. of Natural Resources
Quality Assurance/ Quality Control	Buzz Asselmeier Division of Air Pollution Control IL Environmental Protection Agency	Susan Bem, Chris Hammack Office of Air Management IN Dept. of Environmental Management	John Shenot Bureau of Air Management WI Dept. of Natural Resources

COORDINATION METHODS

As a multistate, regional effort, a high level of coordination and communication was necessary to ensure consistency among the three states in terms of data management, methodology, calculation methods and other issues. To facilitate the necessary communication on these issues, a Southwest Lake Michigan Pilot Study Subcommittee was established by the Great Lakes Regional Emission Inventory of Toxic Air Contaminants Steering Committee. The subcommittee (see Appendix G) included members from the three lead states and Michigan and observers from Minnesota, U.S. EPA and Ontario. The Great Lakes Commission provided project management and secretariat services.

During the course of the SWLM study, the subcommittee communicated via daily e-mail exchanges, conference calls on a weekly or biweekly basis, and monthly or bimonthly in-person meetings to oversee contractor development of the inventory software, and to resolve outstanding issues and inconsistencies among the three states contributing to the pilot study. The project team developed an Internet group mailing service, airtoxics@great-lakes.net, which facilitated transmittal of thousands of messages among the subcommittee members, contractors, and with a larger group of steering committee members, peer reviewers, university and industry researchers, other Great Waters/Urban Area Source states (including Texas and Louisiana), and federal agency representatives. The Great Lakes Commission holds a complete archive of all airtoxics@great-lakes.net messages, including minutes for all conference calls and in-person meetings. The complete e-mail address list for the airtoxics@great-lakes.net mailing service is included in Appendix I.

Finally, a Quality Assurance/Quality Control (QA/QC) Committee was formed to review the pilot study report, establish QA/QC criteria for use by the three states and ensure the report provides an

accurate and useful summary of toxic air emissions at the regional level. Members of the SWLM Regional QA/QC subcommittee are listed in Appendix H. Minutes of this committee's meetings and all e-mail transactions have been archived by the Great Lakes Commission.

4. Results

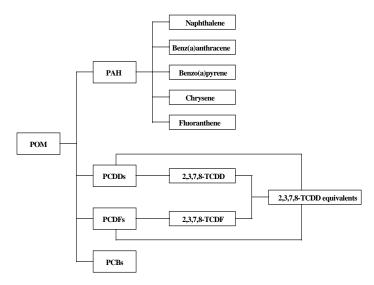
URBAN AREA SOURCE EMISSIONS ESTIMATION GOAL UNDER THE 1990 CAA

The results summarized below should be viewed as a first step for use by policy-makers and others involved in air quality management. These data can support regulatory decisions if used in conjunction with other sources of quality-assured data. With these results, and an enhanced understanding of current inventory capabilities, additional questions can be asked, issues can be more precisely framed, and the goals and objectives of future inventory efforts can be specified in greater detail. In short, the pilot study should be viewed as an initial effort to bridge the gap between the *science* of inventorying toxic air emissions and the public policy *debate* concerning how these emissions affect human health and the environment and how they should be addressed.

The tables and charts beginning on page 28 provide the results of the regional inventory for the southwest Lake Michigan pilot study area. It is important to note that, as a pilot study, the subcommittee has refrained from interpreting the results or from drawing major conclusions that might have policy implications. In addition, the subcommittee finds that, beyond the actual results, the *process* of compiling the regional inventory has, itself, proven extremely valuable as a means of resolving the many technical, methodological, and policy-related issues that impact a multi-state, regional toxic air emissions inventory. Important lessons have been learned, and while these may not be immediately apparent from the tables and charts below, they will nonetheless be put to use in compiling the full, eight-state inventory for the Great Lakes region.

Perhaps the most important outcome of the project is that the SWLM pilot study illustrated the serious shortcomings which still exist in the emissions inventory estimates (see regional results page 28), and suggested necessary steps that must be made to ensure data quality for estimating various pollutant groupings (see Section 5, *Conclusions*).

Southwest Lake Michigan Urban Area Source Inventory


The U.S. EPA GLNPO office serves as the repository for the Southwest Lake Michigan Urban Area Source Inventory. Small point and area source toxic air emissions data collected by the states of Illinois, Indiana and Wisconsin reside in the repository. Internet access to the inventory, using the RAPIDS client software, is available to select researchers. Petitions for access should be directed to the Great Lakes Commission.

1990 CAA Section 112(c)(6): A Protocol for Inventorying Pollutant Subsets

Perhaps the most significant contribution to the goals of CAA Section 112(c)(6) relates to the identified need for better methodology for use in next year's full eight-state regional inventory. With the assistance of a quality assurance/quality control subcommittee, the states drafted new methodology, titled *QA/QC for Pollutant Subsets*, to be added to the protocol.

PAH emission estimates should include total emissions for several pollutants (subsets), a number of which were separately inventoried in this study. Figure 4-1 shows the hierarchy of POM and PAH compounds. Similarly, total chrome should include emission totals for chrome VI, a separately inventoried pollutant. Total emissions for PAH should equal or exceed the sum of all PAH compounds; and total chrome emissions should exceed emission estimations for chrome VI. However, emission factors in FIRE Version 3.0 may exist in one of three combinations: 1) factors for PAH and factors for associated compounds; 2) factors just for PAH; or 3) factors just for some of the associated compounds. A similar situation occurs with chrome and chrome VI.

Figure 4-1:Hierarchy of POM Compounds in the Target Compounds List of the Regional Air Toxic Emissions Inventory

Source: Chun Yi Wu, State of Minnesota, Pollution Control Agency, Air Toxic Unit, 1995

The Quality Assurance/Quality Control Committee expected that emissions estimates for POM, PAH and the PAH subsets would relate to one another as follows:

POM PAH naphthalene + benz(a)anthracene + benzo(a)pyrene + chrysene + fluoranthene

In fact, due to the availability and use of selected emission factors, naphthalene emission estimates exceeded PAH emission estimates. A similar error occurred in the chromium and hexavalent chrome emission estimates. The SWLM pilot study subcommittee recognizes the discrepancies in these totals and has drafted methodology, presented in Section 5, *Conclusions*, to rectify this error. The next step for improving the pollutant subset estimation methodology in the protocol is review and refinement by the eight Great Lakes states, Ontario and U.S. EPA; upon consensus approval by the eight Great Lakes states the methodology will be added to the protocol.

CAA Section 112(k) Area Source Program: Toxic Emissions from Urban Area Sources

The SWLM pilot study emissions inventory for small point and area sources in the Chicago, Milwaukee and Gary urban areas are summarized in the following tables and figures:

Table 4-1: Regional Summary of Pollutant Emissions, by State and Region, for All Inventoried Sources in the Southwest Lake Michigan Pilot Project Study Area, 1993: This table, beginning on page 28, lists total emissions in pounds per year, from all inventoried sources, for each of the 49 target compounds inventoried in the pilot study. Totals are shown for each state's portion of the inventory, as well as for the 12-county region as a whole. This summary is intended to provide a general overview of toxic air pollutants in the 12-county study area. While the data can be broken

down further, doing so would focus attention on a level of detail that may not be appropriate at this point in the study process.

Appendix E provides the carcinogenicity ratings for the pollutants inventoried in the SWLM project, based on U.S. EPA's Integrated Risk Information System (IRIS) Database. Ratings in the IRIS database are based on agency consensus positions on the potential adverse human health effects of approximately 500 substances, updated monthly. The carcinogenicity ratings provided in Appendix E are from September 1995.

Table 4-2: Regional Toxic Air Emissions by Inventoried Source for the Southwest Lake Michigan Pilot Project Study Area, 1993: This table, beginning on page 30, summarizes pollutant emissions for each SIC code and area source included in the pilot study. The information in the table is displayed in two parts. The page on the left shows the contribution from each SIC code to the total emissions of each pollutant, in pounds. The page on the right displays the percentage contribution from each SIC to the total emissions of each pollutant. Each set of facing pages show data for the same SICs. Appendix D provides a comprehensive listing of SIC codes available in the RAPIDS database.

Figures 4-6 through 4-35: Estimated Emissions from Small Point and Area Sources in the Southwest Lake Michigan Study Area, 1993: The pie charts beginning on page 73 show the percentage emission contributions from small point sources (by SIC code) and area sources (by type) to the total area source emissions for each of the inventoried pollutants.

1986 Great Lakes Governors' Toxic Substances Control Agreement and CAA Section 112(m)

Working together on this pilot project, the Great Lakes states, and particularly the lead states of Illinois, Indiana, Wisconsin and Michigan, have set a national example of cooperative emissions inventory development across states. The efforts the state air agencies are undertaking together in this project, supported by U.S. EPA, is unprecedented. The Great Lakes states have developed and are sharing with each other a core of expertise in toxic inventory development; in fact, in May 1995 the SWLM pilot states hosted a regional training seminar at the U.S. EPA GLNPO office in Chicago. Using the office's computer training facility, the states offered a hands-on RAPIDS training program to emission inventory specialists from the states of Minnesota, New York, Ohio, Pennsylvania, Ontario and U.S. EPA Region 5. Pilot inventory state personnel from Illinois, Indiana, Michigan and Wisconsin each developed and taught components of the two-day session.

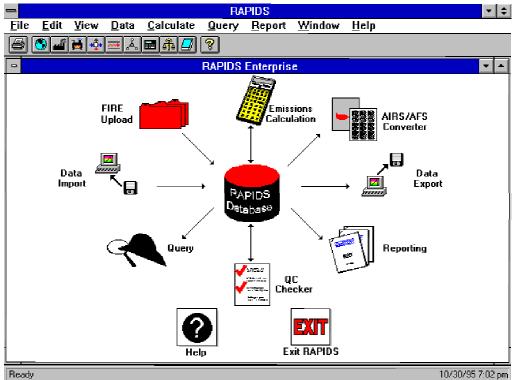
An important result from the SWLM pilot inventory is that the states learned how to conduct a multistate inventory and are now poised for a successful regionwide, eight-state effort. The concrete implications in terms of the governors' agreement and CAA Section 112(m) will be seen in 1996 and thereafter. However, if the SWLM pilot study had not been conducted, the pilot study states expect that the quality of the results from the full, eight-state regional inventory would be greatly reduced.

The SWLM project began a unique process whereby multiple states collaborated to develop common client/server software, and populated and tested a core system while working on their own jurisdiction-specific enhancements and made these modifications available to others to use as needed. States have agreed to maintain the ability to populate the regional repository core system, while modifying their state-specific systems to meet their own evolving needs.

Michigan and Wisconsin have moved a step further with RAPIDS and both are building major RAPIDS components into their state emission inventory systems. The Michigan Department of Environmental Quality estimates that the use of RAPIDS has saved the state between \$300,000 and \$500,000, and perhaps more.

OVERVIEW OF THE RAPIDS SYSTEM

A copy of the RAPIDS software (Version 1.5) and user manual may be downloaded via anonymous ftp from the Great Lakes Information Network (ftp.great-lakes.net/pub/great-lakes/RAPIDS/ver1 5).


RAPIDS is a client/server system consisting of an ORACLE back-end database designed using ORACLE CASE tools, and a suite of front-end applications developed using various software tools (primarily PowerBuilder and SAS). The design of the RAPIDS system is depicted in Figure 4-2.

The RAPIDS system includes the following components:

An ORACLE back-end database consisting of various ORACLE data tables of emissions data and estimates located on a separate (i.e., separate from the front-end client applications) file server at each participating state.

A set of ORACLE data tables of emissions data and estimates located at the U.S. EPA GLNPO office containing emissions data and estimates obtained from each of the participating states (i.e., a regional database of emissions data and estimates). RAPIDS includes a client/application that uploads (*GLNPO Upload*) each state's set of ORACLE

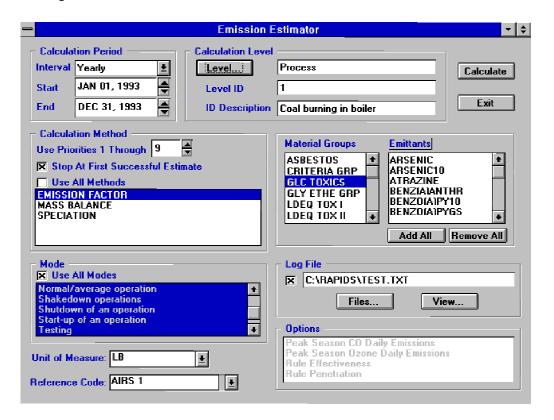
Figure 4-2: Design of the RAPIDS System

tables to the regional repository located at GLNPO.

Data Import and Data Export client applications that facilitate the import of emissions data and estimates maintained by the states external to RAPIDS into the back-end database, and which facilitate the export of data from the back-end database into ASCII files (i.e., import file format).

A *FIRE Upload* client/application (this application is under development) that will upload the emission factors contained in FIRE (Factor Information Retrieval System) into a reference table used to calculate emissions. FIRE is an emission factor database repository developed by U.S. EPA. The emission factors contained in FIRE have been incorporated into RAPIDS and used within the system to compute emission estimates for certain source categories.

A set of *Data Entry* client/applications developed in PowerBuilder that consist of various forms/screens to enter different types of emissions data, and emission estimates derived external to RAPIDS.


Emission Estimator client/application that allows the user to compute emission estimates using a variety of emission estimation techniques (e.g., product of activity data and an approved emission factor, speciation of either particulate matter or VOC emission estimates or user-defined algorithms) that match pre-established SCC/compound-specific methodologies listed in the protocol. (The protocol is a comprehensive document that describes the methodologies the participating states will use to compile the regional inventory, including the procedures to resolve differences of opinion.) A sample emission estimation screen is depicted in Figure 4-3 and shows the various options available to the user for estimating emissions.

A *QC Checker* client/application that performs various statistical checks on the emissions data and estimates contained in the ORACLE back-end database. Due to time constraints, the states did not test the automated QC Checker during the SWLM pilot project. Section 5, *Conclusions*, provides further discussion of the QC Checker. Figure 5-1 shows a sample QC Checker screen.

A *Report Generator* consisting of various client/applications that generate summary reports of the emissions data and estimates contained in the ORACLE back-end database.

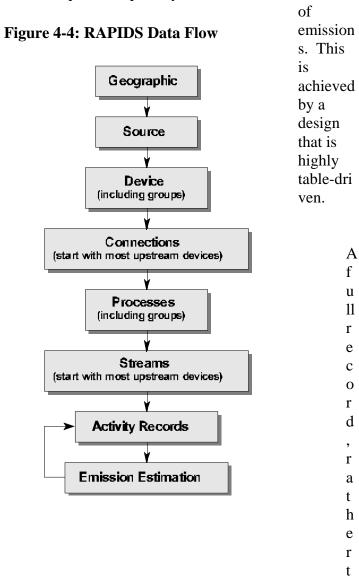
A *Data Converter* client/application that converts the emissions data and estimates into the U.S. EPA AIRS Facility Subsystem (AFS) transaction records. Discussion of the RAPIDS-to-AIRS data converter is provided in Section 5, *Conclusions*, under *Implications for RAPIDS*.

Figure 4-3: Sample RAPIDS Emission Estimation Screen

Description of the RAPIDS Data Model

The RAPIDS data model is the cornerstone of the RAPIDS system. It consists of a core data model that includes entities that are common or shared by most mission critical applications, such as emission inventory, permitting and compliance. As more applications are added to the RAPIDS system, the core data model will be extended to include the additional entities/attributes needed to support these new applications. As such, the core data model is the foundation upon which the enterprise is built. The stronger the foundation, the more robust the enterprise.

The RAPIDS core data model can be viewed as consisting of the following Modules: Geographic, Legal, Source, Device, Process, Stream and Material. RAPIDS is geo-referenced and locations can be entered as either points, lines or polygons.


The data flow in RAPIDS is illustrated in Figure 4-4. RAPIDS follows a geographic-source-device-process-stream hierarchy. At the geographic-source-device levels, physical/locational information is stored and managed. Every source type has a <u>process</u>, every process is located at a <u>device</u> and every device is located at a <u>source</u>. Processes are associated with input and output streams that transfer energy and material into and out of the process. Output streams transport air pollutant emissions (gaseous streams), water contaminants (liquid streams), solid and hazardous waste materials (solid streams), and products (product streams) generated by a process. Input streams/materials feed device/process combinations and are transformed into output streams/materials.

Both physical connectivity between devices and logical connectivity for various device/process combinations are tracked. Logical connectivity allows the proper tracking of streams for different

device/process combinations when the pathway is process-specific. For example, a boiler burning oil might have different controls than when the same unit is burning gas. In RAPIDS, that situation would be represented by two separate processes and the logical connectivity would allow the user to track the associated streams through different pieces of control equipment.

The features of the RAPIDS data model that provide the flexibility needed to handle multimedia environmental data management needs, as well as complexity of device and process connections, are itemized below.

There are a relatively small number of tables required to quantify and characterize sources

h a n a si n g

le field, is used to store information on a data item. This is a means of providing complete information on the data item of interest, including the context (when, where and subject material), confidentiality, and reference information (other documents, who and when the data were entered). This is referred to as a "flexible attribute" format, which contrasts with the fixed attributes used in most other data models (see discussion below on the activity record structure).

Only a single source table, a single device table and a single process table is needed to contain data on all types of sources, devices and processes, including both point and area sources.

Entities can be grouped as needed and activity records can be associated with such groups (e.g., a group of related processes in use during an operating scenario).

Activity Record Structure

The traditional data modeling approach for storing the value of a data item in a database is the use of a fixed attribute field for that data item. That field is included in a table along with other data items used to quantify or qualify the object of interest. For example, the value of temperature of a process would have a field called TEMPERATURE included in a table for the subject process; the units (Fahrenheit or Celsius) would not be coded but would be implied and listed in the data dictionary for the database.

The method used in RAPIDS for storing nearly all attribute information is an activity record. An activity record can contain any type of data (e.g., temperature, tank color, emissions), any form of data (i.e., numeric, character or logical), and information on any entity in the database: Geographic, Legal, Source, Device, Process, Stream and Material. This method of storing data is referred to as a "flexible attribute" method. Although the activity record method requires more data storage, it provides much greater flexibility.

Figure 4-5 shows how the flexible and fixed attribute methods compare. In this figure, a Floating Roof Tank Table has been designed as a fixed attribute table to use a single record to record all physical parameters. The units and time period associated with the data in these records are not

explicitly stored in the database; the units are predefined in the data dictionary (and displayed in a hard coded table) and the year is understood or included in the name of the database. In the flexible approach, the physical parameters of floating roof tanks are included in a single Activity Table which contains all parameters, including physical parameters on devices. The Activity Table uses one record for each parameter stored; a metric is used to define the parameter (discussed further below). Values of the parameter can be character, numeric or logical. The Activity Table includes the start date/time and the end date/time for the period over which the value of that parameter was valid; a blank end date/time indicates that the value is currently valid. Use of start and end date/time provides the flexibility to code any time period, not just a fixed time period implicitly used for a given table. In addition, this approach makes possible the inclusion of previous values of the same parameter with the date/time that the value changed (as shown in column four of Figure 4-5 for the color of the tank). The units are explicitly coded; this allows for entry of any valid units (so that units do not need to be manually converted to the requirements of the database) and makes automation of unit conversion relatively easy.

A metric is a code that identifies a specific type of data that can be measured and recorded in an activity record. Metrics are defined for the data types of interest. Examples of metric codes are PRO TEMP, VOL RATE, DISCHARGE, and ID PT AFS for the temperature of a process, the rate that a volume of material can flow in a stream, the mass of material discharged into the environment and the AIRS identification number for a point of discharge, respectively.

The complete contents of a RAPIDS activity record are as follows:

The specific source, device, process or stream with which the value is associated;

Metric--a code describing the type of activity data (e.g., temperature, mass flow of emissions, color of a tank, ID number

Figure 4-5: Comparison of Fixed and Flexible Attribute Approaches to Data Storage

Conventional Approach (Fixed Attribute)

Floating Roof Tank Table, Period=1993

Device ID	Height (ft)	Diameter (ft)	Color	Seals
1	57	200	White	Y
2	40	105	Blue	N
				(.
	•		•	•

RAPIDS Approach (Flexible Attribute)

Device Table, Device ID=1, (Device Code=Floating Roof Tank)

					_ / / /
Start Date/Time	End Date/Time	Metric	Value	Units	
1-1-90		Height	57	ft	\forall
1-1-90		Diameter	200	ft	
1-1-90	7-7-93	Color	Blue		
7-7-93		Color	White		\leftarrow /
7-7-93		Seal	Y		\leftarrow

BRUCKMN5.DRW - 10/26/94 - JH - SAC

color of a tank, ID number used in another system);

Start Date/Time--the date and time at the beginning of the period of the activity data recorded;

End Date/Time--the date and time at the end of the period of the activity data recorded (may be the same as the Start Date/Time for an event or blank if the value continues to be the current value);

Material--a name/code describing the type of material with which a

stream or material activity data record is associated (e.g., an emittant, product, fuel, chemical or liquid waste);

Value Type--a code identifying the basis on which a production or emission rate value was developed (allowed, maximum, minimum, average, design capacity or potential this field is blank for actual data);

Value--the data quantifying or qualifying the activity data (including numeric and text information);

Units--a code for the units of the activity data value (if any);

Confidential--a flag for the confidential status of the data;

Method--a code for the method used to generate the activity data (e.g., emission factor);

Reference--the type and identification of other information associated with how this value was generated; and

Entry documentation--a code for who entered the data and the date when it was entered.

The power and flexibility of the activity record approach of structuring attribute data is evident by the fact that a new data item can be added to the database simply by defining a new metric. The time period of the data is completely flexible. Nothing in the activity record is implied; the time period, units of measure and material measured are entered explicitly. The original value with its units of measure can be reported as actually recorded rather than using converted units that do not correspond to the original documentation.

Conceptually, RAPIDS is a process-oriented system. The paradigm that RAPIDS follows is to perform a mass balance on all device/process combinations for any time period of interest at a given source (i.e., facility). It treats a source as a control volume. Inside that control volume are smaller control volumes (i.e., devices) where processes occur. A mass balance (i.e., a tracking of all input and output streams/materials) for each process at a device is tracked, and in this manner, a mass balance on the entire source can be performed, if desired. Streams that enter the environment are actually identified as a different variable (i.e., discharge as compared to mass/volume flow). In this manner all streams are tracked and characterized by their physical state (e.g., gaseous, liquid, solid, etc...) and associated materials, and not whether they are waste or product streams. RAPIDS, in its conceptual formulation, can be extended to include all media, including both waste and product streams, in one integrated database, and could function as a multimedia enterprise system.

New Source, Device and Process Codes

RAPIDS includes its own set of source, device and process codes (RAPIDS process codes are different from SCC and AMS codes; however, it is possible to map the latter codes to their RAPIDS equivalent). These RAPIDS codes are not specific to a particular categorization of emission sources, (e.g., point or area, as is common in most other inventory systems). Therefore, all sources, devices and processes in RAPIDS, or any grouping of these entities, can use the same RAPIDS codes. For example, the device code "DRY CLEANING EQUIPMENT" is used for all such equipment, whether

it is an area source (i.e., a group of dry cleaning equipment associated with a group of dry cleaning facilities) or a point source (i.e., a specific piece of dry cleaning equipment at a specific dry cleaning facility).

Common Treatment of Point and Area Sources

One of the unique features of RAPIDS is its common treatment of point and area emission sources. In most systems/databases, point and area sources are treated differently, and the resulting emission estimates are typically stored in separate databases, one for point sources and another for areas sources.

RAPIDS treats all source types, whether they are point or area (or even mobile), in the same manner. The key to the common treatment of point and area sources is the ability of RAPIDS to accommodate groups of sources, devices and/or processes. A source can be an industrial facility, such as a large dry cleaning facility or a utility (examples of typical point sources), or using the grouping capability of RAPIDS, a group of small dry cleaners. A device can be a piece of stationary industrial equipment, such as the equipment used to dry clean clothes or a boiler, or, again, using the grouping capability, a group of dry cleaning equipment, a group of boilers at an industrial facility or a group of fuel burning equipment associated with a group of homes.

An example of how RAPIDS would treat dry cleaners as an area source is as follows. The user would create a source group that included all dry cleaners in a given county. Then a device group that included all dry cleaning equipment associated with the dry cleaning establishments that were members of the above mentioned source group would be created. Following this paradigm, a process group would be created for the above mentioned device group with input and output streams. The emissions associated with the group of dry cleaning establishments would be stored on the output stream of the process group.

This formulation allows the user the flexibility to treat large dry cleaning facilities as discrete point sources and the remaining smaller dry cleaning establishments in a county as a group of sources. Treating point and area source types the same, both in the structure of the database and the codes used for these types (see below), facilitates reconciliation between these two types of emission sources. Double counting of emissions can be easily avoided as the emissions associated with the large dry cleaning facility can be subtracted from the emissions associated with the source group. In this manner, all typical area source categories can be accommodated using the same source/device/process/stream paradigm used to characterize typical point sources. Instead of using point and area sources, the user simply decides when it is more convenient to store and manage information at the "member" (i.e., a discrete source/device/process) or the "group" (i.e., a group of source/device/processes) level. Different treatments can be used for different purposes. For the dry cleaning example, risk assessment studies may require treating even small dry cleaners as discrete sources; however, photochemical modeling studies might only need to characterize emissions from dry cleaners at the county level (i.e., a group of dry cleaning establishments located in a given county).

Overview of Emission Estimation in RAPIDS

The RAPIDS data model allows for very complex material flow relations among devices. The Emission Estimator was designed to track and record the amount of a material of interest (i.e.,

emittants) flowing into and out of each process as the material flows downstream. The terminology used to define various devices relative to their flow characteristics is as follows:

An originating device is a device that creates a stream and has no inputs of that emittant (and is the device where the SCC-AMS code is stored);

A stack device is a device that discharges a stream into the environment without altering the amounts of the emittant involved; and

A control device is a device that alters the amount of the emittant in a stream as that stream passes through the device.

In general, these definitions are emittant-specific. A device could create one material stream and alter another material stream (e.g., a scrubber reduces SO_2 gas and creates a liquid waste containing sulfur compounds). The RAPIDS Emission Estimator assumes that all devices fit one of these categories regardless of the emittant.

The calculated emissions for a given execution of the Emission Estimator are stored in the Activity Table for a stream. Summary reports, such as the Source Detail Report and the Tier 1-2-3 Report, are generated by reading the Activity Table records containing this data.

The following Metric Codes are used to identify the amount of material in a stream Activity Table:

MASS FLOW is the amount of material that travels through a connection to another device; and

DISCHARGE is the amount of material that is discharged to the environment.

All streams have the amount of material flowing in a stream using one of these metric codes. The MASS FLOW and DISCHARGE of emissions from an originating device is the same as uncontrolled emissions.

Reporting of emissions requires that the emissions entering the atmosphere (i.e., controlled emissions) be associated with an SCC-AMS code which is stored with the originating device. RAPIDS identifies these emissions with the device that discharged the emissions, not the device from which the emissions originated. In order to facilitate reporting of controlled emissions, RAPIDS uses a third Metric Code to cover this case. The Metric Code DOWNSTRMDIS (for downstream discharge) is the amount of material that was created in an originating device and actually discharged to the environment. Downstream discharge is calculated by summing individual discharges of emissions created by the originating device (i.e., stack emissions and fugitive emissions). RAPIDS writes a DOWNSTRMDIS Activity Table record at the output stream of the originating device.

The methods that can be used to calculate emissions are:

Mass Balance;

Emission Factors (using generic and source-specific emission factors); and

Speciation (using generic and source-specific speciation factors).

The method(s) applicable to any source, device, process and material are identified in the protocol document and then incorporated into RAPIDS. This helps ensure consistency among all users in calculating emission estimates for a given source category.

Pie charts were not created for the following 19 pollutants due to the lack of inventoried source data:

Atrazine

Chlordane

Coke oven

Diethylhexyl phthalate

Di-n-butyl phthalate

Di-n-octyl phthalate

Dioxins; 2,3,7,8, equivalent

Heptachlor

Hexachlorobenzene

Hexachlorobutadiene

Hexachloroethane

Alkylated Pb compounds

Methoxychlor

Parathion

Pentachloronitrobenzene

Pentachlorophenol

2,4,5 Trichlorophenol

2,4,6 Trichlorophenol

Trifluralin

5. Conclusions

The three states that conducted the SWLM study believe that the toxic air emission estimates contained in Section 4, *Results*, of this report and available for U.S. EPA and Great Lakes state online review at the regional repository at the U.S. EPA Great Lakes National Program Office in Chicago, represent the best single compilation of such estimates.

The pilot study's conclusions focus on ways to improve the emission estimation protocol, enhance quality control of multistate toxic inventories of emissions from large and small sources, streamline automated procedures and outline next steps in reaching the goal of institutionalizing a full eight-state toxic air emissions inventory. The emission estimates provided herein must be viewed as a pilot effort; area source emission estimation techniques for urban areas in the Great Lakes region will improve over time as the lessons learned in this effort are incorporated by the states and as new emission factors are propagated for the toxics of interest.

During the next few years, the Great Lakes states will be working together to inventory the target list of toxics from all sources in the region. Once the eight-state, regionwide inventory is completed and quality assured, the compiled data can be used to support studies on the relative impacts of the inventoried emissions and regulatory decisions.

IMPLICATIONS FOR THE PROTOCOL

The pilot study provided a trial run for the *Great Lakes Air Toxics Emissions Inventory Protocol*. The three states that participated in the pilot study used the protocol in developing their portions of the pilot inventory. With this experience, the protocol can be refined to address issues that arose during the pilot study.

Pollutant Subsets

It will most likely be necessary to add a whole section to the protocol on pollutant categories and how to reconcile automated estimates with what is known about the "real world" emission of these pollutants, including how to interpret the data. The minimum goal of the SWLM pilot study was to use emission factors to estimate emissions of hazardous air pollutants. Going to the next level would involve rectifying the group/group members relationships. The following is draft methodology, prepared by the SWLM states, that will be considered by the Great Lakes Commission Regional Emissions Inventory of Toxic Air Contaminants Steering Committee.

Draft Methodology for Quality Assurance/Quality Control of Pollutant Subsets for the Air Toxics Emissions Inventory Protocol for the Great Lakes States

Methodology:

- 1. Identify pollutants that have subsets. For example, see Figure 4-1. Other examples include:
 - chrome VI and total chrome
 - any others
 - should organic material be fully inventoried (i.e. reactive, non-reactive, chain, ring, POM, etc.)?
- 2. Do subsets include pollutants not being inventoried? For example, PAH also includes pyrene.
 - identify these cases
 - should these pollutants be inventoried?
 - what emission factors are available?
- 3. Identify cases in state's data where group members' emissions are greater than group emissions. Make a special note of group members' emissions that do not have a group emission. Correct the report.
- 4. Identify emission factors (in FIRE, RAPIDS or any other reference used) having group member emission factors greater than group emission factors (or group emission factors not present).
 - research these factors to see how they came about and apply to each other
 - select proper factor
 - change protocol (RAPIDS) to update factors
 - suggest updates/corrections to FIRE
 - recalculate emissions

Clarifying the List of Pollutants

Metals

Metals are inconsistently listed in the list of target compounds (Table 2-1). The states agreed to clarify their intent to **inventory both elemental and compound releases** by making the following changes:

Existing Target CompoundsProposed ChangeCobaltCobalt and compoundsChromiumChromium and compoundsMercuryMercury and compoundsCopperCopper and compoundsLeadLead and compoundsNickelNickel and compounds

These changes will be reflected in the protocol document.

PAHs/POMs

With regard to the issue of PAHs and POMs, the subcommittee recommended that discussion among the eight states center on the proposal to add all 16 PAHs to the inventory while leaving PAH in as a group category. If accepted, this proposal would require that the protocol be modified. A decision also is required concerning whether 2,3,7,8-TCDD equivalents should be kept on the target compound list. This question also may require modification of the protocol. The SWLM subcommittee will raise this issue at an early 1996 meeting of the full committee.

Quality Assurance/Quality Control

A comprehensive Quality Assurance/Quality Control (QA/QC) Plan is included as Appendix A of the protocol. Chapters 4 and 5 of the QA/QC Plan include a variety of statistical checks on the quality of the numerical inventory results and stipulate that the RAPIDS software may be used as the tool for making these checks.

The automated QA/QC checks built into the RAPIDS software were not fully developed and tested at the time the states prepared their pilot inventories. Other QA/QC checks in RAPIDS (e.g. SIC validation checks) were implemented and proved to be valuable. Therefore, many of the specific statistical checks prescribed in the protocol were not performed as part of the pilot inventory effort. However, each state made significant efforts to manually check the quality of their data before including it in this report. Furthermore, each state adhered to those portions of the QA/QC Plan which did not require the use of automated statistical checks. Finally, the states have formed a committee to direct additional analysis of the data (see Appendix H). The QA/QC committee will further define the manual checks necessary to ensure an accurate regional inventory.

The efficacy of the RAPIDS automated QA/QC checks cannot be evaluated at this time; thus, the pilot states are currently unable to completely evaluate the effectiveness and usefulness of the QA/QC portion of the protocol. This should be a higher priority during Phase Three of the regional inventory effort.

Consistency Across Source Categories Inventoried by the States

The protocol indicates that in order for a state's inventory to be considered complete, the inventory must be comprehensive; that is, it must include emission estimates from every source/source category believed to emit one or more of the target pollutants.

The states compiling this pilot inventory faced time and resource constraints that made it impossible for any of them to develop comprehensive inventories that fully satisfy the protocol. Each state did the most comprehensive inventory it could, given these constraints. Consequently, the specific categories inventoried by each state varied, for at least two reasons. First, some states had access to readily available data (e.g., gasoline service station sales) that other states did not have. And second, some states already had in-state initiatives (e.g., toxic emission reporting rules), which overlapped with the goals of this inventory and allowed them to provide more extensive data.

One implication of this finding is that the states participating in the regional inventory in Phase Three should consider dropping the comprehensiveness *requirement* from the protocol in favor of *minimum criteria for acceptance*. In other words, the states should reach agreement every time an inventory is prepared on what the minimum criteria are for completeness, then encourage each other to exceed the stated minimums. This approach was adopted in the pilot effort and each state was able to exceed the minimum criteria for acceptance.

IMPLICATIONS FOR RAPIDS

As with the protocol, the pilot study provided an opportunity to utilize the RAPIDS software in a multistate emissions inventory effort. The three states used the system in compiling their portion of the pilot inventory. During the course of the SWLM project, the states took the RAPIDS software all the way from data model design through software development to testing and implementation. Considering the tight time line of the project and the large software design, development and testing task, some components of the RAPIDS software were not tested to the extent the states would have preferred. Those components requiring further development and testing include: QC Checker, RAPIDS-to-AIRS Facility Subsystem (AFS) upload and automated FIRE upload.

The Great Lakes states have agreed to optimize the speed of the Emission Estimation module designed under the SWLM project. Work is already underway to optimize the speed of the import/export module. This work should be completed in late 1995 or early 1996.

Minnesota has taken the lead in developing an AFS-to-RAPIDS converter. This module should prove useful for a number of jurisdictions interested in exporting AIRS data to the RAPIDS system and then working from there to estimate toxic emissions.

As of this writing, each of the eight Great Lakes states is expected to run a copy of the RAPIDS software in their air quality management agency. The software will be used to calculate toxic air emissions and provide internal quality assurance checks on the state data generated externally. Each state will use the RAPIDS-to-GLNPO upload mechanism to transmit point and area source data to the regional repository at the U.S. EPA GLNPO office.

QC Checker

R

Α

PI

D

S to

Α

The QC Checker screen depicted in Figure 5-1 shows the various options available to the user for performing these statistical checks. The efficacy of the RAPIDS automated QA/QC checks cannot be evaluated at this time; this should be a high priority during Phase Three of the regional inventory effort. It also is likely that additional statistical checks will be added to the QC Checker application over time.

RAPIDS Edit View Data Calculate Query Report Window Help 🞒 🚫 🚄 🙀 اہمی **■** おり QC Checker Report Selections QC Report Output File Name **▼** Descriptive - long with plots Browse... Descriptive - long without plots QC Report Log File Name Descriptive - short Browse... **X** Outlier report Lower Percentile Upper 95 ŧ 5 Lines per page: 65 Columns per page: 176 Operation Batch From 01/01/1994 Source Type: Point ₹ To Date: 12/31/1994 Metric Code: HEIGHT Level Type: Device <u>*</u> <u>*</u> Value Type: Unit of Measure: FT **Group By** State: TEST STATE <u>*</u> State County: TEST COUNTY <u>*</u> County Source SIC: 4911 Source Code: INDUST <u>*</u> <u>+</u> □ Source SIC Code Device SIC: 4911 Device Code: STACK <u>*</u> ■ Device SIC Code SCC/AMS Code Generate Close Ready 10/30/95 7:08 pm

Figure 5-1: Sample RAPIDS QC Checker Screen

FS Data Converter

A Data Converter is the client/application that converts the emissions data and estimates into the U.S. EPA AFS transaction records. A sample AIRS Converter screen is depicted in Figure 5-2 and shows the various options available to the user for creating AFS transaction records from RAPIDS. The current version of this application only converts those data elements that are required to meet the minimum system requirements of AIRS and allow the submittal to be accepted; these data elements do not constitute an acceptable or complete SIP inventory submittal. The AIRS converter application will need to be upgraded to convert certain additional data elements in order to provide AIRS with all of the information required for a SIP submittal. The RAPIDS-to-AFS data converter will be tested under Phase Three as well as the AFS-to-RAPIDS data converter developed during Phase Three under the leadership of the state of Minnesota.

RAPIDS View Calculate Data <u>W</u>indow Query : <u>R</u>eport <u>H</u>elp GEINI (RAPIDS to AIRS/AFS Data Convertor) **Parameters GEINI Status Report File Name** AIRS/AFS Transaction Selections **▼ Plant General** Browse.. **X** General Point □ General Stack SAS Log File Name **▼** Segment General Browse.. **▼** Segment Pollutant (Annual Emissions) AIRS Transaction File Name Browse... Operation Mode: Batch 01/01/1994 🖨 To 12/31/1994 🖨 Reference Code: AIRS 1 <u>+</u> State: TEST STATE **±** County: | ± Criteria Pollutants ▼ Toxic Pollutants **Group:** GLC TOXICS <u>+</u> Generate Close 10/30/95 7:10 pm

Figure 5-2: Sample AIRS Converter Screen

IMPLICATIONS FOR FIRE

The U.S. EPA Factor Information Retrieval (FIRE) system is used to populate the default emission factors in RAPIDS (i.e., type = G). The emission factors from the FIRE (Version 3.0, dated September 1994) were loaded into RAPIDS in 1995 and used in the SWLM pilot inventory. (The 4.0 version of FIRE was internal and never released; the 5.0 version contained structural changes only for use with the CD-ROM release.)

An updated version of FIRE (Version 5.1, dated September 1995) has been incorporated into RAPIDS for the eight-state effort. This version contains a revised data structure and numerous additional emission factors, and uses an updated version of the SCC-AMS codes. These codes have been expanded, including a new set of SCC codes starting with 6 that cover MACT sources, and have

revised definitions that enhance their internal consistency. The updated SCC-AMS codes and definitions are included with the factor data in FIRE.

Emission Factor Development

The Great Lakes states are using emission factors from FIRE Version 3.0. The states recognize that, in some cases, the emission factors in FIRE are not specific enough to be fully applicable to the different chemical forms of certain pollutants. In some cases, it is not certain if an emission factor is for a pollutant or for one of its compounds. For example, it is not clear whether the emission factor in FIRE for SCC 10100202 (for mercury of 1.6e-5 lb/million BTU heat input) includes only elemental mercury, mercury contained in the compound, specific compounds of mercury or all compounds of mercury. This issue will require further consideration by the states.

Automated FIRE Upload

At the present time, the RAPIDS system cannot execute a direct upload of FIRE data. The following discussion presents some of the options the states will consider during the next phase of the project.

The most important FIRE data structure modifications are inclusion of fields that facilitate automated uploading of FIRE emission factors into RAPIDS. These changes were made by EPA in response to GLC/state requests to modify FIRE to facilitate the import of emission factors into RAPIDS. These fields, which are used by RAPIDS, are:

```
denominator unit (ef_units_d); and denominator material (ef_mat).
```

These two fields were added to both factor tables (criteria and toxics) and to the SCC-AMS definition table, which contains the SCC-AMS standard units.

Required FIRE Data Modifications

As presently populated, these fields cannot be used to generate the RAPIDS-equivalent denominator unit and denominator material codes. The denominator material field has been only partially populated or is overly general (e.g., "coal" rather than "anthracite coal"). The denominator unit field is not consistently coded (e.g., Feet, Ft and Foot are all valid). These problems are primarily due to the fact that these two fields are not constrained to match any convention. In addition, there are some errors in the denominator unit data (e.g., acres/yr and BTU-hr).

In order to complete the RAPIDS FIRE Upload application, the denominator material and unit fields must be manually populated. However, if the subject FIRE fields are corrected and made consistent by EPA, this problem would be resolved.

Start and End Dates for Emission Factors

The FIRE system does not maintain any information on emission factors that are replaced (either because the value was revised or because of a change in the organization of SCC-AMS codes). The emission factors contained in any one version of FIRE are considered valid only during the release period of that version.

Emission calculations made using the Emission Estimator Application use the emission factors found in the RAPIDS Factor Table. Replacing previous FIRE factors with updated FIRE factors in RAPIDS will result in having calculated emissions for which the emission factor used is no longer in the database.

One possible solution is that the emission factors that are replaced could continue to be stored in RAPIDS by specifying a start date/time and end date/time over which those factors are valid. Unfortunately, there is currently no way to specify a start date/time and an end date/time for factors in RAPIDS. With the addition of start date/time and stop date/time fields to RAPIDS, the software will be able to store all emission factors (as well as any other factors that have a date range) ever used. Outdated factors will be able to be viewed along with current factors to identify changes that have occurred to these factors as the data in FIRE evolves.

The FIRE Upload Application would need to be run separately by each RAPIDS user in order to enter the date at which their system switched from one version of FIRE data to another.

IMPLICATIONS FOR THE FULL EIGHT-STATE REGIONAL INVENTORY AND NEXT STEPS

During the SWLM pilot inventory the Great Lakes states developed methodology and mechanisms with which to conduct a multistate inventory; the states are now poised for a successful regionwide, eight-state effort. Each Great Lakes state will follow the *Great Lakes Air Toxics Emissions Inventory Protocol* in developing a statewide inventory of emissions from point and area sources. The states will electronically populate the region's inventory repository, assure the regional inventory's quality and approve access to the data for U.S. EPA and state researchers. Data summaries and reports will be made available to policy-makers and the public via the Great Lakes Information Network on the Internet.

The first regional inventory effort will compile full state 1993 calendar year data for the eight Great Lakes states. This will be the second pilot implementation of the RAPIDS/protocol system. Beginning with 1995 calendar year data and thereafter, the states will compile yearly inventories, following the process developed under the SWLM pilot inventory and the first regional pilot inventory.

Base-year data with which to support public policy decisions under the terms of the governors' agreement and CAA Section 112(m) will be released in 1996 and updated yearly thereafter.

The SWLM project began a unique process whereby multiple states collaborate on the development of common client/server software and populate and test a core system while working on their own jurisdiction-specific enhancements, making these modifications available to others to use as needed. States have agreed to maintain the ability to populate the regional repository core system, while modifying their state-specific systems to meet their own evolving needs. An important component of the success of the regional emissions inventory effort is the respect, cooperation and trust developed among the state air agencies and U.S. EPA personnel working on this project. Without this, the eight-state project would not have happened.

6.	Appendices			

Appendix A: Illinois Toxic Emissions Inventory

BACKGROUND

For its part in the pilot study, Illinois developed an air toxic emissions inventory for calendar year 1993 for the greater Chicago urban area, including the counties of Cook, DuPage, Grundy, Kane, Lake, McHenry and Will. The seven-county area has a 1990 population of 7,296,513, representing 80 percent of the total population of the overall study area. The table below provides a brief demographic overview of the seven counties included in Illinois' portion of the regional inventory.

Demographic Characteristics for the Illinois Region of the Southwest Lake Michigan Air Toxics Pilot Study Area

	Cook Co.	DuPage Co.	Grundy Co.	Kane Co.	Lake Co.	McHenry Co.	Will Co.
Total population, 1990	5,105,067	781,666	35,337	317,471	516,418	183,241	357,313
Urban population, 1990	5,093,221	773,284	15,918	271,246	483,419	138,746	299,126
Rural population, 1990	11,846	8,382	16,419	46,225	32,999	44,495	55,487

Source: U.S. Bureau of the Census

Illinois inventoried all sources, regardless of size. Data are provided for the total of all sources and for those sources under 25 tons per year of criteria pollutants. The data sources and calculation methods used by Illinois in preparing its portion of the emissions inventory are described below.

DATA SOURCES

The Illinois Environmental Protection Agency (IEPA) - Bureau of Air maintains several databases that include emissions data. Source identification for the Great Lakes Toxic Emission Inventory was made by using the existing state criteria pollutant inventory. No attempt was made to identify sources by any other means listed in Section 3.4 of the *Air Toxics Emissions Inventory Protocol*. If an additional reference was used to identify a source category, the description of such has been included below under *Calculation Methods*.

Emission Inventory System: The Bureau of Air maintains a point source inventory, the Emission Inventory System (EIS). This database resides on the state IBM mainframe and is an IMS database. This database maintains information on all permitted sources in Illinois. The EIS is the criteria pollutant emission inventory, although the number of pollutants inventoried can be expanded. Data stored include:

Facility Level: Id number, name, location address and contact, location coordinate, SIC, and

emission rate (tons/year for potential, allowable, maximum and average).

Permit Level: Permit number, date last received, status (granted, denied, rejected), type

(operating, construction, lifetime, FESOP), analyst, and expiration date.

Point Level: Identifier, point description, and permit number.

Mode Level: Identifier, mode description, number of identical points, SCC number, seasonal

throughputs, heat input, fuel type, fuel sulfur content, fuel ash content, fuel heat content, operating hours (hr/day, day/wk, wk/yr for maximum and average), process weight rate (lb/hr for maximum and average), and operating rate (SCC

units/hr for both maximum and average).

Emission Level: Pollutant, emission estimation method code, uncontrolled emission rate (lb/hr for

maximum and average), controlled emission rate (lb/hr for maximum and average - calculated), allowable emission rate (lb/hr for maximum and average), potential emissions (tons/yr - calculated), maximum emissions (tons/yr - calculated), average emissions (tons/yr - calculated), and allowable emissions (tons/yr -

calculated).

Control Level: Identifier, control description, control device code, and permit number.

Efficiency Level: Pollutant, maximum and average removal efficiency.

Stack Level: Identifier, height (ft), diameter (ft), exhaust flow rate (acfm for maximum and

average) exhaust temperature (F for maximum and average), and location

coordinate.

Capturing Level: Feeding point/mode or control identifier, capturing control or stack identifier,

capture efficiency.

The relation between EIS and RAPIDS is as follows:

EIS Level	RAPIDS Level
Facility	Source
Permit	N/A
Point	Device
Mode	Process
Emission	Stream Activity
Control	Device
Efficiency	Stream Activity
Stack	Device
Capturing	Connections and Streams

Programs have been written that create ASCII records of EIS data that allow downloading to a PC. These files are then imported into FoxPro, allowing easier manipulation of the data. These data files were used to create the RAPIDS import files.

Data that existed in the EIS as of December 31, 1993, were downloaded into the FoxPro files. These data covered the entire state. Separate files were created for the data for the pilot study counties. A program was then run to read the FoxPro database and create another FoxPro database that had the fields and structure of RAPIDS. Once that file had been created, a tab-delimited file was created for import into RAPIDS. Because of the large volume of data, the import files were separated by county.

Computerized Annual Emission Reporting System (CAERS): Within the Bureau of Air, the Compliance and Systems Management Section maintains the Computerized Annual Emission Reporting System database (CAERS). This database is written in Oracle and resides on a separate server on the Bureau's LAN. This database maintains much of the same data as the EIS. The database structure of the EIS and CAERS are very similar.

In addition to the EIS data stored in CAERS, source-reported data (facility emissions, emission point emissions, operating hours, operating rates) are also maintained. This type of data exists for the calendar years of 1992, 1993, and 1994.

The detail of source-reported data varies depending upon the location and the potential emissions of the source. Sources located outside the ozone nonattainment areas (Cook, DuPage, Jersey, Kane, Lake, McHenry, Madison, Monroe, St. Clair and Will Counties and the townships of Aux Sable and Goose Lake in Grundy County and the township of Oswego in Kendall County) are required to report only source emissions. A source that is located in an ozone nonattainment area that has potential emissions of Volatile Organic Material (VOM) and Nitrogen Oxides (NOx) both less than 25 tons/yr also is required to only report source emissions.

Sources located in an ozone nonattainment area that have the potential to emit VOM or NOx in an amount greater than 25 tons/yr are required to not only report source emissions, but also operating hours, operating rates, hourly emissions, control device data and stack data for each VOM or NO_x emission point. Out of the approximately 8,000 sources required to submit an Annual Emission Report, only 1,000 fall into this category.

The annual emission reporting rule specifies that emissions must be reported for regulated pollutants. For the 1993 reporting year, the regulated pollutants were particulate matter, sulfur dioxide, nitrogen oxides, volatile organic material and carbon monoxide. No reporting of toxic pollutants was required. Therefore, very little toxic pollutant-specific emission rate data exists. Since many toxic pollutants have become regulated in the past year, subsequent reports will include these toxic emissions.

CAERS was not used to identify sources for the inventory. CAERS was initially loaded with data from the EIS so they were identical. CAERS will be a very good quality assurance/quality control (QA/QC) tool in revising operating rates that are specific to calendar year 1993. At this time, no QA/QC or analysis has been performed on the data reported for 1993.

Toxic Emission Inventory: Within the Bureau of Air, the Permit Section maintains a Toxic Emission Inventory. This database is written in Rbase and resides on the Bureau's LAN. This database maintains data for emission units at the process level on a per hour basis for pollutants of interest. Data regarding control devices (type and removal efficiency) and stacks (height, diameter, flow rate, temperature, building dimensions, property line distance) are also maintained.

Data enter the Toxic Emission Inventory by way of permit review. If a permit under review has emissions of a toxic material, the appropriate data are sent to the Technical Support Unit where a preliminary screening is done. The appropriate data are then entered into the system. The data provided to the database are based on permit application data and not actual usage data and are not specific for a year. In addition, the inventory is by no means complete. Updates to the database are made only at the time of permit renewal, normally every five years in Illinois. Since Illinois has no regulations dealing with emissions of toxic pollutants, no emissions of toxic materials were calculated by the Permittee or the Permit Section. Data were only provided in the cases where the specific pollutant being emitted was simple to determine.

For the above reasons, the Toxic Emission Inventory was not used in the initial compilation of the inventory. The Toxic Emission Inventory will serve as a good QA/QC check for the Great Lakes Toxic Inventory. Results obtained using RAPIDS can be compared to data existing in the Toxic Emission Inventory. The Toxic Emission Inventory could also be searched by pollutant to identify additional sources.

Ozone Regional Computer Inventory System (ORCIS): Within the Bureau of Air, the Air Quality Planning Section maintains an emission inventory named ORCIS. This database is written in FoxPro and stores information specific to the 1990 base-year ozone inventory. Therefore, it was not used as a source to identify sources or calculate emissions. It should be noted that data for ORCIS were originally downloaded from the EIS.

TRI Data: The Office of Chemical Safety, under the Environmental Programs Section maintains the Toxic Release Inventory (TRI) data. The database is not directly accessible to the Bureau of Air. The data included in the TRI database are specific to the TRI reporting requirement and do not include any appropriate key information to relate the TRI database to the EIS. For this reason, the TRI database was not used to identify sources. This database will be a good QA/QC check for the Great Lakes Toxic Emission Inventory, and EIS, when the time permits.

Area Source Database: Within the Bureau of Air, the Air Quality Planning Section maintains an emission inventory dealing with area source emissions. This inventory is maintained in a spreadsheet and stores information specific to the 1990 base-year ozone inventory. Therefore, it was not used as a source to identify sources or calculate emissions. Toxic pollutant emissions from mobile sources are not part of the scope of the pilot study and therefore are not included in this report.

CALCULATION METHODS

The following is an overview of how point source emission estimates were calculated for each source category. The tables list the number of sources and the number of emission points, as well as the number of each emitting less than 25 tons per years. The text then lists the SCC codes used for the source category and the resulting emission factors obtained from the GLC-FIRE Version 3.0 database.

External Combustion - Natural Gas Firing

	Sources <25 tons/year	All Sources
Number of Sources	215	1603

1 Total Emission Points 1 0.59 1 4950	Total Emission Points	639	4956
---------------------------------------	-----------------------	-----	------

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 10100601, 10100602, 10100604, 10200601-10200604, 10300601-10300603, 10500106 and 10500206. Permitting of external combustion emission points is required for boilers that have a heat input of one million BTU/hour or greater. This would account for the great number of emission points. Sources too small to be included in this category will be covered under area source emissions for natural gas combustion.

The GLC-FIRE database was then queried to obtain emission factors for the SCC range. The emission factors found were for mercury (SCC - 10100601) and POM (SCC - 10200601). It was assumed that the emission factors for these pollutant/SCC combinations also applied to all the SCCs identified above.

The emission factors identified were in terms of pounds of pollutant per 10^{12} BTU input. The EIS does not directly store this type of data. To determine the heat input in terms of BTUs, the operating rate (units of million cubic feet) were multiplied by the heat content (BTU/cubic foot) and then converted. This number was then multiplied by the emission factor to obtain the emission rate. The specific emission factors used for the point sources are listed below beginning with Table 2-9.

External Combustion - Fuel Oil Firing

	Sources <25 tons/year	All Sources
Number of Sources	254	411
Total Emission Points	429	874

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 10100401, 10100404, 10100405, 10100406, 10100501, 10100504, 10100505, 10200401, 10200404, 10200405, 10200501, 10200504, 10200505, 10300401, 10300404, 10300501, 10300501, 10500105 and 10500205. Permitting of external combustion emission points is required for boilers that have a heat input of one million BTU/hour or greater. This would account for the great number of emission points. Sources too small to be included in this category will be covered under area source emissions for fuel oil combustion.

The GLC-FIRE database was then queried to obtain emission factors for the SCC numbers listed above. Emission factors were found for the SCCs of 10100401, 10100404, 10200401, 10300401, 10100405, 10100501, 10200501 and 10300501.

The SCCs of 10100401, 10100404, 10200401 and 10300401 are similar processes, so the emission factors for the SCC 10100401 were used since they had a higher factor quality.

The SCCs of 10100405, 10100405, 10200404 and 10300404 are similar processes, so the emission factors for the SCC 10100405 were assumed to apply to the other SCCs of this group.

The SCCs 10100501, 10200501, 10300501, 10500105 and 10500205 are similar processes, so the emission factors for SCC 10100501 were assumed to apply to the other SCCs of this group. There was no emission factor for hexavalent chrome for this group of SCCs, so an emission factor was

calculated using the average ratio of hexavalent chrome to total chrome for the other two SCC groups. It was determined that emissions of hexavalent chrome was approximately 21% of total chrome.

The emission factors identified were typically in terms of pounds of pollutant per 10^{12} (or 10^6) BTU input. The EIS does not directly store this type of data. To determine the heat input in terms of BTUs, the operating rate (units of 1000 gallons) was multiplied by the heat content (BTU/lb) and then converted. This number was then multiplied by the emission factor to obtain the emission rate. A density of 7.88 and 7.05 lb/gal was assumed for residual oil and distillate oil respectively.

External Combustion - Coal Firing

	Sources <25 tons/year	All Sources
Number of Sources	0	10
Total Emission Points	0	26

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 101002xx, 102002xx and 103002xx. It should be noted that no anthracite or lignite coal is burned in Illinois according to the EIS. Permitting of external combustion emission points is required for boilers that have a heat input of one million BTU/hour or greater.

The GLC-FIRE database was then queried to obtain emission factors for the SCC numbers listed above. Emission factors were found for the SCCs (that occurred in the EIS) of 10100202, 10200202, 10100203, 10100204, 10100212, 10200204 and 10300209.

The SCCs of 10200202 and 10100202 are similar processes, so where there was an emission factor for the SCC 10100202 and not for 10200202, the emission factor for 10100202 was used. This occurred for the pollutants of total chrome, manganese, mercury and nickel.

The emission factor for POM for the SCC 10100203 was a controlled emission factor (ESP), the removal efficiency was assumed to be 99.2% in order to calculate an uncontrolled emission factor.

The SCCs of 10100226 and 10100212 are similar processes, so the emission factors for the SCC 10100212 were used also for the SCC 10100226. Here again, a removal efficiency of 99.2% (ESP) was assumed for POM in order to calculate an uncontrolled emission factor.

The SCCs of 10100204, 10200204 and 10300209 are similar processes, so the emission factors for 10200204 were used for the group. The emission factor for total chrome was from the SCC 10100204. A removal efficiency of 94% was assumed for the pollutant POM (cyclone) and a removal efficiency of 97.2% (multiclone) was assumed for the pollutants PCDD and PCDF in order to calculate an uncontrolled emission factor.

The emission factors identified were typically in terms of pounds of pollutant per 10^{12} BTU input. The EIS does not directly store this type of data. To determine the heat input in terms of BTUs, the operating rate (units of tons) was multiplied by the heat content (BTU/lb) and then converted. This number was then multiplied by the emission factor to obtain the emission rate.

Internal Combustion

	Sources <25 tons/year	All Sources
Number of Sources	9	46
Total Emission Points	19	203

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 2xxxxxxx. Permitting of internal combustion emission points is required for combustion points that have a heat input of 1500 horsepower or greater. This is approximately equal to 3.8 million BTU/hr, so it is possible many internal combustion sources have not been inventoried.

The GLC-FIRE database was then queried to obtain emission factors for the SCC numbers listed above. Emission factors were found for the SCCs (that occurred in the EIS) of 20100101, 20200102, 20200201 and 20200202.

Emission factors were found for the pollutants arsenic, cadmium, total chrome, cobalt, copper, lead, manganese, mercury and nickel for the SCC 20100101. The SCCs of 20100102, 20200101 and 20200102 are similar processes that did not have emission factors, so the emission factors of 20100101 were assumed to apply. In the case of SCC 20200102, there was an emission factor for mercury, so this emission factor was used.

Emission factors were found for the pollutants cadmium, total chrome, copper, manganese, mercury, nickel and phenol for the SCC 20200201. The SCCs of 20100201, 20100202 and 20200202 are similar processes that did not have emission factors, so the emission factors of 20200201 were assumed to apply. In the case of SCC 20200202, there were emission factors for ethylbenzene and mercury, so these emission factors were used.

The emission factors identified were typically in terms of pounds of pollutant per 10⁶ (or 10¹²) BTU input. The EIS does not directly store this type of data. To determine the heat input in terms of BTUs, the operating rate was multiplied by the heat content and then converted. This number was then multiplied by the emission factor to obtain the emission rate. A density of 7.88 and 7.05 lb/gal was assumed for residual oil and distillate oil, respectively, when converting emission units that fired oil.

Chemical Manufacturing

No sources were inventoried for the chemical manufacturing SCCs (301xxxxx). These sources should be over 25 tons/year and have a Maximum Achievable Control Technology (MACT) category established for them.

Food and Agriculture

No sources were found for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties that had an SCC code of 302xxxxx and had an emission factor in GLC-FIRE.

Primary Metals Production - By-Product Coke Manufacturing

	Sources <25 tons/year	All Sources
Number of Sources	0	3
Total Emission Points	0	54

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30300301 and 30300399. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The emission factor for POM for SCC 30300308 was a controlled emission factor (ESP). A removal efficiency of 95% was assumed to calculate an uncontrolled emission factor.

Primary Metals Production - Copper Smelting

	Sources <25 tons/year	All Sources
Number of Sources	0	1
Total Emission Points	0	1

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30300501 and 30300599. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The emission factor for cadmium for SCC 30300517 was a controlled emission factor (ESP). A removal efficiency of 95% was assumed to calculate an uncontrolled emission factor.

Primary Metals Production - Iron Production

	Sources <25 tons/year	All Sources
Number of Sources	5	8
Total Emission Points	24	44

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30300801 and 30300899. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The emission factor for cadmium for SCC 30300813 was a controlled emission factor (ESP). A removal efficiency of 95% was assumed to calculate an uncontrolled emission factor.

Primary Metals Production - Steel Production

	Sources <25 tons/year	All Sources
Number of Sources	13	32
Total Emission Points	51	197

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30300901 and 30300999. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The emission factor for nickel for SCC 30300913 was a controlled emission factor (scrubber). A removal efficiency of 90% was assumed to calculate an uncontrolled emission factor.

The emission factor for nickel for SCC 30300928 was an average of the emission factors available in GLC-FIRE.

It should be noted that the emission factors in GLC-FIRE were different for stainless steel and alloy steel. The emission factors for alloy steel were used.

Primary Metals Production - Lead Production

	Sources <25 tons/year	All Sources
Number of Sources	1	2
Total Emission Points	2	29

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30301001 and 30301099. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The emission factor for cadmium for SCCs 30301010, 30301011, 30301012 and 30301013 were controlled emission factors (miscellaneous devices). A removal efficiency of 95% was assumed to calculate an uncontrolled emission factor.

Secondary Metals Production - Copper/Brass

	Sources <25 tons/year	All Sources
Number of Sources	31	40
Total Emission Points	186	247

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30400201 and 30400299. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The emission factor for cadmium for SCC 30400217 was a controlled emission factor (baghouse). A removal efficiency of 99% was assumed to calculate an uncontrolled emission factor.

Secondary Metals Production - Gray Iron Foundries

	Sources <25 tons/year	All Sources
Number of Sources	14	21
Total Emission Points	116	223

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30400301 and 30400399. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

Secondary Metals Production - Lead

	Sources <25 tons/year	All Sources
Number of Sources	19	22
Total Emission Points	59	63

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30400401 and 30400499. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

Secondary Metals Production - Lead Battery Manufacture

	Sources <25 tons/year	All Sources
Number of Sources	3	3
Total Emission Points	41	41

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30400501 and 30400599. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The emission factor for arsenic for SCC 30400526 was a controlled emission factor (baghouse). A removal efficiency of 99% was assumed to calculate an uncontrolled emission factor.

The emission factor for lead for SCC 30400528 was a controlled emission factor (baghouse). A removal efficiency of 99% was assumed to calculate an uncontrolled emission factor.

Secondary Metals Production - Steel Foundries

	Sources <25 tons/year	All Sources
Number of Sources	45	68
Total Emission Points	219	399

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30400701 and 30400799. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control

device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

Secondary Metals Production - Zinc

	Sources <25 tons/year	All Sources
Number of Sources	25	31
Total Emission Points	144	170

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30400801 and 30400899. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

The emission factors retrieved from the GLC-FIRE database were controlled emission factors. The control device listed for these emission factors was a fabric filter. A removal efficiency of 99% for cadmium was assumed. This factor was applied to the controlled emission factor to obtain an uncontrolled emission factor. To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the cadmium removal efficiency was assumed to be equivalent to the particulate removal efficiency.

The emission factor for the SCC 30400899 was not used. This SCC is for other operations not classified. It could not be determined how the emission factor, and units, applied to this source category.

Mineral Products - Asphaltic Concrete

	Sources <25 tons/year	All Sources
Number of Sources	30	51
Total Emission Points	92	206

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30500201 and 30500299. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The emission factor for arsenic for SCC 30500201 was a controlled emission factor (baghouse and multiclone). A removal efficiency of 99% was assumed to calculate an uncontrolled emission factor.

The emission factor for cadmium for SCC 30500201 was a controlled emission factor (knockout pot and venturi, or scrubber). A removal efficiency of 90% was assumed to calculate an uncontrolled emission factor and an average of the two was taken.

The emission factor for total chrome for SCC 30500201 was a controlled emission factor (scrubber). A removal efficiency of 90% was assumed to calculate an uncontrolled emission factor.

The emission factor for hexavalent chrome for SCC 30500201 was a controlled emission factor (scrubber). A removal efficiency of 90% was assumed to calculate an uncontrolled emission factor.

The emission factor for POM for SCC 30500201 was a controlled emission factor (cyclone plus scrubber). A removal efficiency of 95% was assumed to calculate an uncontrolled emission factor.

Mineral Products - Concrete Batching

	Sources <25 tons/year	All Sources
Number of Sources	117	128
Total Emission Points	401	448

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC between 30501101 and 30501199. The GLC-FIRE database was then queried to obtain emission factors for the SCC range.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

Organic Solvent Evaporation - Dry Cleaning

	Sources <25 tons/year	All Sources
Number of Sources	137	145
Total Emission Points	189	205

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 40100101 or 40100103. The emission rate of volatile organic material was then taken directly from the EIS to represent the emissions of perchloroethylene.

In the cases where there was control equipment, the removal efficiency for perchloroethylene was assumed to be equivalent to the removal efficiency of volatile organic material from the EIS.

The data obtained from the EIS is not representative of the entire population of dry cleaners. For sources using less than 360 gallons of perchloroethylene per year, a permit is not required. Since a permit is not required, very few dry cleaners exist in the stationary point source inventory. Where data does exist, it is out of date. Many dry cleaners have switched to dry-to-dry machines, greatly reducing emissions. As part of the NESHAP, extensive data are being made available regarding dry cleaners. This data will be evaluated an placed in the inventory and this report.

Organic Solvent Evaporation - Degreasers

	Sources <25 tons/year	All Sources
Number of Sources	182	240
Total Emission Points	244	376

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 40100202, 40100203, 40100204, 40100205, 40100222, 40100223, 40100224, 40100225, 40100252, 40100253, 40100254, 40100255, 40100259, 40100302, 40100304, 40100305 and 40100306. The emission rate of volatile organic material was then taken directly from the EIS to represent the emissions of the appropriate pollutant as described by the SCC.

In the cases where there was control equipment, the removal efficiency for the specific pollutant was assumed to be equivalent to the removal efficiency of volatile organic material from the EIS.

Data regarding cold cleaning degreasers, SCCs of 401003xx, is limited. Cold cleaning degreasers are not required to obtain a permit and therefore are not routinely in the inventory. Data regarding degreasers will be greatly expanded when the NESHAP is implemented.

Storage Tanks - Organic Material

	Sources <25 tons/year	All Sources
Number of Sources	83	174
Total Emission Points	823	1661

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 40703609, 40703610, 40706005, 40706006, 40706007, 40706008, 40706019, 40706020, 40706021, 40706022, 40706023, 40706024, 40706027, 40706028, 40708403, 40708404, 40722001, 40722002, 40722007, 40722008, 40722009, 40722010, 40722011, 40722012, 40722021 and 40722022. The emission rate of volatile organic material was then taken directly from the EIS to represent the emissions of the appropriate pollutant as described by the SCC.

In the cases where there was control equipment, the removal efficiency for the specific pollutant was assumed to be equivalent to the removal efficiency of volatile organic material from the EIS.

Data regarding storage tanks is limited. Storage tanks under 5000 gallons are not required to obtain a permit and therefore are not routinely in the inventory. Storage tanks of this size have small to negligible emissions. In addition, many storage tanks in the EIS have not had emissions calculated due to the small emissions from the tanks.

Storage Tanks - Petroleum Products

	Sources <25 tons/year	All Sources
Number of Sources	393	612
Total Emission Points	1712	3124

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 403xxxxx and 404xxxxx. No attempt was made to speciate emissions for these petroleum product storage tanks. A count of the sources and emission points has been provided.

Waste Disposal - Incineration

	Sources <25 tons/year	All Sources
Number of Sources	494	536
Total Emission Points	540	594

Data were obtained from the EIS for Cook, DuPage, Grundy, Kane, Lake, McHenry and Will Counties for emission points that had an SCC of 50100101, 50100505, 50100506, 50200101, 50200102, 50200103, 50200504, 50200505, 50200506, 50300101, 50300102, 50300103, 50300104, 50300114 and 50300506. The GLC-FIRE database was then queried to obtain emission factors for the SCC range. In order to reduce the number of emission factors, only the uncontrolled emission factors were selected from GLC-FIRE.

To calculate uncontrolled emissions, the operating rate from the EIS was multiplied by the appropriate emission factor. When calculating emissions from emission points that had a control device associated with it, the pollutant removal efficiency was assumed to be equivalent to the particulate removal efficiency from the EIS.

The SCCs of 50100101, 50200101, 50300101 and 50300114 are similar processes. Emission factors were found only for the SCC 50100101. The other SCCs were assumed to have the same emission factors. Emission factors for PCDD and PCDF were found for the SCC 50100101; however, they were deemed nonrepresentative since the source description was for manufacturing of wood doors.

The SCCs of 50100506, 50200506 and 50300506 are similar processes. Emission factors were found only for the SCC 50300506. The other SCCs were assumed to have the same emission factors.

The SCCs of 50100505, 50200504 and 50200505 are similar processes. Emission factors were found only for the SCC 50200505. The other SCCs were assumed to have the same emission factors.

The SCCs of 50200102, 50200103, 50300102, 50300103 and 50300104 did not have an emission factor in GLC-FIRE. Emission factors for these SCCs were obtained from the Chicago Area Source Inventory (Contract #68-D1-0031 Work Assignment 64 for Julian Jones).

Dry Cleaning Establishments (SIC 7211)

Number of Sources: 2990

Number of Dry-to-Dry Machines: 1133

Number of Transfer Machines: 105

The perchloroethylene consumption and dry cleaning equipment (machine type, number of machines and control equipment type) data were obtained from the 1993 Initial Notification Report submitted by dry cleaning establishments as required under the NESHAP standard. This included 2990 sources.

Perchloroethylene emissions were calculated by using the emission factor 0.7 lb perchloroethylene emitted per lb of perchloroethylene used for dry-to-dry machines. For transfer machines, a value of 0.82 was used. In the cases where a source had both types of equipment, the perchloroethylene usage was split evenly among the machines.

RESULTS

The tables below provide the results of Illinois' toxic emissions pilot inventory for the source categories listed above. The results are not analyzed, nor is there a determination of significant digits. The EIS can maintain emission estimates to four decimal places, so that precision was maintained. For dioxins and furans, the emission rate was extended to eight decimal places due to the extremely low emission rates obtained for those pollutants. The tables summarize the results according to county emissions, SIC emissions and pollutant emissions.

Data have been provided both for sources with criteria pollutant emissions less than 25 tons/year and for all sources for the county emission summary and pollutant emission summary. Data for the SIC emission summary were only provided for sources emitting less than 25 tons/year of criteria pollutants due to the extreme length. Data for emissions by SIC for all sources are available.

County Emission Summary: Table A-1 is a summary, by county, of the emissions calculated for the source categories listed above. For each pollutant, two numbers are given for each county. The number on the top represents all sources in that county that have total emissions of the criteria pollutants (carbon monoxide, nitrogen oxides, particulate matter, sulfur dioxide and volatile organic material) less than 25 tons/year. The number on the bottom represents emissions for all sources in that county, regardless of size.

SIC Emission Summary: Tables A-2 through A-8 are a summary, by SIC and county, of the emissions calculated for the source categories listed above. Results have been provided only for sources that have emissions less than 25 tons/year of criteria pollutants.

Pollutant Emission Summary: The source category contribution for each pollutant is summarized beginning on page 208. Contributions are shown both for sources emitting less than 25 tons per year as well as for all sources in the study area.

Emission Factor Summary: Tables A-9 through A-26 list the emission factors used for each source category, including the SCCs utilized, pollutants, uncontrolled emission factors, and the factor quality.

Appendix B: Indiana Toxic Emissions Inventory

BACKGROUND

Indiana prepared an inventory of toxic emissions for minor point sources for calendar year 1993 for Lake and Porter counties, located along the southwest shore of Lake Michigan. The two-county area has a 1990 population of 604,526, representing 6 percent of the total population of the overall study area. The table below provides a brief demographic overview of the two counties included in Indiana's portion of the regional inventory.

Demographic Characteristics for the Indiana Region of the Southwest Lake Michigan Air Toxics Pilot Study Area

	Lake Co.	Porter Co.
Total population, 1990	475,594	128,932
Urban population, 1990	453,887	86,403
Rural population, 1990	21,707	42,529

Source: U.S. Bureau of the Census

Despite limited resources, the *Air Toxics Emissions Protocol* was followed as much as possible. Previous to this project, Indiana did not have a database of toxic estimates for the 49 compounds covered by the pilot study. The RAPIDS software, available information from existing emissions statement databases, and the Factor Information Retrieval System (FIRE), Version 3.0, were used to calculate emissions for the inventory.

DATA SOURCES

The initial list of sources was taken from an emissions statements database similar in structure and content to AIRS (Aerometric Information Retrieval System). This database contains facilities required to report criteria pollutant emissions. Confidence in the data are substantial as data submitted by each facility are certified by the state and local agency inspectors and used as fee billing information. This list was reduced to include only minor sources that have actual annual emissions of less than 25 tons total criteria pollutants.

For the pilot study the primary interest is sources that are not applicable to Maximum Achievable Control Technology (MACT) standards, further reducing the number of sources included. Residential woodburning stoves were included to help keep the inventory consistent with the other pilot states' inventories. The information included in the inventory is limited to that which was available to staff and to sources for which Source Classification Codes (SCC) codes can be identified. The results listed below have not been reviewed by the individual plants for accuracy and, consequently, should be used with caution. Mobile and area sources (i.e., dry cleaners and gas stations) were not included as part of Indiana's contribution to the pilot study.

Information from the emissions inventory database was used to calculate toxic emissions for the processes within each facility. One disadvantage of using a criteria pollutant database for information is that the volatile organic compounds (VOCs) emissions are not broken down into the speciated compounds, and the fuel process rates are not always descriptive enough to be used with FIRE emission factors. Also, not enough information is provided on control efficiencies for air toxic compound emissions. The inventory data include the process description, SCC codes, and fuel process rates for each process within a facility. All SCC's of the selected sources are matched against available emission factors from FIRE Version 3.0 and then only these sources are included in the inventory. Most of the emission factors for the 49 GLC compounds are from FIRE. If a source-specific emission factor for lead was available for a particular source, then that emission factor was used.

The total number of sources in the point source inventory for Lake and Porter counties is under 200. This number may appear low in relation to Illinois and Wisconsin and the relative population levels in the three states. As noted in the introduction, differences among the three states' inventories may result from differing reporting requirements. Indiana's pilot inventory staff have reviewed this issue and verified the accuracy of their methodologies and calculations; the details in this regard are available in Indiana's project documentation file.

CALCULATION METHODS

The type of calculation method used throughout the inventory is generic emission factor, as referenced in the protocol. For all the sources calculated with results included in the inventory, this method is Priority 1. The priority numbers are used to determine which estimation method is best for that particular process, with 1 being the best choice. No speciation mass fractions are used to calculate emissions. Also, no mass balance methodology is used because, where this was a Priority 1 method, not enough information is available for these sources to calculate emissions. Sources that are known to be minor sources with available FIRE emission factors, but that lack enough information to calculate emissions, are excluded from the inventory. The SCCs for the five excluded sources are 30900199, 40100306, 30199999, and 40200701.

All data, except the geographic import files and emission estimates, were entered manually. RAPIDS' Emission Estimator is used to calculate emissions except where lead estimates are supplied by the facility. All calculations were verified with hand calculations and by a spreadsheet database in order to perform additional quality checks and to compare actual calculations performed in RAPIDS with calculations estimated using the spreadsheet. For 1993, the total number of sources with FIRE emission factors is 18; the total number of minor sources is 119; and the total number of criteria pollutant point sources in Indiana's emission statements database for Lake and Porter counties is 159.

As stated previously, consistency is needed between the state inventories so that they can be combined into a regional inventory. RAPIDS software helps ensure this by accepting only device codes, process codes, SCC codes and Standard Industrial Classification (SIC) codes that are in RAPIDS reference tables. This standard format requires that RAPIDS be used to load emission estimates to the U.S. EPA Great Lakes National Program Office in order for the data to be in the proper format for the regional database to accept it.

Felt Saturation

SIC Code: 2951 Number of Sources: 1

Pollutants: POM

Rotary Dryers

SIC Code: 2951 Number of Sources: 7

Pollutants: arsenic, benz(a)anthracene, benzo(a)pyrene, cadmium, chromium, chromium

VI, chrysene, copper, fluoranthene, lead, manganese, mercury, naphthalene,

nickel, PAH, POM

Drum Dryers

SIC Code: 2951 Number of Sources 1

Pollutants: arsenic, benz(a)anthracene, benzo(a)pyrene, cadmium, chromium,

chromium VI, chrysene, copper, fluoranthene, manganese, mercury,

naphthalene, nickel, TCE, 111

Wood Incineration

SIC Code: 3341 Number of Sources: 1

Pollutants: benz(a)anthracene, benzo(a)pyrene, fluoranthene

The source has a control device and the emission factors are uncontrolled, so it is assumed that the 70% overall control efficiency for PM could also be applied to these emissions.

Secondary Metal Production - Al Smelting Furnace

SIC Code: 3341 Number of Sources: 1

Pollutants: cadmium, lead, nickel

Distillate Boilers

SIC Codes: 2992, 2821, and 3312

Number of Sources: 3

Pollutants: arsenic, cadmium, lead, manganese, mercury, nickel, chromium, POM

Wood-Fired Boilers

SIC Code: 2448 Number of Sources: 1 Pollutants: arsenic, benz(a)anthracene, benzo(a)pyrene, cadmium, chromium,

chromium VI, chrysene, cobalt, fluoranthene, manganese, mercury,

naphthalene, nickel

Chemical Manufacturing - Inorganic Pigments

SIC Code: 2819 Number of Sources: 2 Pollutants: lead

Electric Induction Furnaces

SIC Code: 3316 Number of Sources: 1

Pollutants: Manganese

Area: Residential Woodburning Stoves

The wood consumption rate for woodburning stoves is taken from the *Draft Indiana Greenhouse Gas Emissions and Sinks: Estimates for 1990* (IDEM, Nov. 1994). The annual fuel consumption is calculated using heating degree days and the number of housing units using wood as the primary fuel. The following SCC/AMS codes are associated with this process: 2104008010, 2104008050, and 10100903. Emissions are calculated for the following pollutants: arsenic, benz(a)anthracene, benzo(a)pyrene, cadmium, chromium, chromium VI, chrysene, cobalt, fluoranthene, manganese, mercury, naphthalene, nickel, PAH, PCDD, PCDF, Phenol, TCDD, 2378, and TCDF, 2378. Residential woodburning does not have an SIC code because it is not an industrial activity. SIC code 9999 will be used to identify this source.

RESULTS

The top five pollutants for small point sources, with respect to annual quantity emitted, are lead, manganese, nickel, polycyclic organic matter (POM), and naphthalene. Four source categories are represented in the inventory: petroleum and coal products, primary metal industries, lumber and wood products, and chemical and allied products. Processes included in these source categories are oil and wood combustion (10200501 and 10200903), chemical manufacturing (301%%%%%), secondary metal production (304%%%%%), asphaltic concrete manufacturing (305002%%), and solid waste incineration (50300105).

The complete results for Indiana are summarized in Table B-1 and Table B-2, which list emissions sorted by SIC and pollutant (in pounds) for Lake and Porter counties, respectively.

Table B-1: Lake County IN, Toxic Emissions Sorted by SIC and Pollutant (lbs)

	2448	2819	2951	2992	3312	3316	3341	9999	Total
Arsenic	0.0137		0.1936	0.984	0.0057			0.5003	1.70
Benz(a)anthracene	0.0003		0.0295				0.153	5.685	5.87
Benzo(a)pyrene	0.00003		0.0013				0.03	34.11	34.14
Cadmium	0.0027		2.7875	2.577	0.0015		1.25	0.1137	6.73
Chromium	0.0203		2.1112	11.247	0.0067			0	13.39
Chromium VI	0.0072		0.1744					0.2615	0.44
Chrysene	0.0067		0.0131					56.85	56.87
Cobalt	0.0203							0.7391	0.76
Copper			1.3448						1.34
Fluoranthene	0.014		0.1042				0.51	45.48	46.11
Lead	0.1716	627.165	0.9793	2.085	0.0013		2.5		632.90
Manganese	1.3884		7.3009	3.28	0.002	25.516		0.796	38.28
Mercury	0.001		0.4398	0.7029	0.0004			0.03695	1.18
Naphthalene	0.3588		22.8605					818.64	841.86
Nickel	0.0874		81.1869	4.218	0.0025		0.0632	0.1137	85.67
Phenol								45.48	45.48
PCDD, Total								0.01641	0.02
PCDF, Total								0.09057	0.09
PAH			2.5192					2842.5	2845.02
РОМ	0.4368		84.1234	5.1549	0.00309				89.72
2,3,7,8-TCDD								0.000042	0.00
2,3,7,8-TCDF								0.002501	0.00

Table B-2: Porter County IN, Toxic Emissions Sorted by SIC and Pollutant (lbs)

	2821	2951	9999	Total
Arsenic	0.0012	0.119	0.418	0.54
Benz(a)anthracene		0.0123	4.75	4.76
Benzo(a)pyrene		0.0027	28.5	28.50
Cadmium	0.0031	0.9826	0.095	1.08
Chromium	0.0135	0.3528	0	0.37
Chromium VI		0.0669	0.2185	0.29
Chrysene		0.0069	47.5	47.51
Cobalt			0.6175	0.62
Copper		0.5377		0.54
Fluoranthene		0.0434	38	38.04
Lead	0.0025	0.3687		0.37
Manganese and compounds	0.0039	557.5026	0.665	558.17
Mercury	0.0008	0.0227	0.03088	0.05
Naphthalene		11.2642	684	695.26
Nickel and compounds	0.005058	26.5901	0.095	26.69
Phenol			38	38.00
PCDD, Total			0.01371	0.01
PCDF, Total			0.07567	0.08
PAH		4.5418	2375	2379.54
РОМ	0.0062	7.4252		7.43
2,3,7,8-TCDD			0.000035	0.00
2,3,7,8-TCDF			0.00209	0.00
1,1,1-trichloroethane		14.43		14.43

Appendix C: Wisconsin Toxic Emissions Inventory

BACKGROUND

The State of Wisconsin conducted its air toxic emissions inventory for the pilot study in Milwaukee, Racine and Kenosha counties for calendar year 1993. With a 1990 population of 1,262,490, the three-county area represents 14 percent of the total population of the overall study area. The table below provides a brief demographic overview of the three counties included in Wisconsin's portion of the regional inventory.

Demographic Characteristics for the Wisconsin Region of the Southwest Lake Michigan Air Toxics Pilot Study Area

	Kenosha Co.	Milwaukee Co.	Racine Co.
Total population, 1990	128,181	959,275	175,034
Urban population, 1990	101,076	959,275	138,943
Rural population, 1990	27,105	0	36,091

Source: U.S. Bureau of the Census

The area sources inventoried are divided in two classes: individual "small" (or "minor") point sources that emit less that ten tons per year of any of the 49 pollutants; and "traditional" area sources. Wisconsin followed the *Air Toxics Emissions Inventory Protocol* in developing its contribution to the pilot study, as well the Factor Information Retrieval System (FIRE) and the Reference Tables in the Regional Air Pollution Inventory Development System (RAPIDS). An evaluation of the protocol document and an assessment of the emission estimation techniques used in the project are provided below.

DATA SOURCES

The majority of the emission sources included in the Wisconsin inventory were collected by the Wisconsin Department of Natural Resources (DNR) as part of its annual air emissions inventory process. State regulation, ch. NR 438, Wis. Adm. Code, requires detailed annual emission reports from any source with total, actual, annual emissions above a reporting threshold. The reporting threshold varies for each of the 500+ air contaminants covered by the rule, from as little as 0.0001 lb/yr for 2,3,7,8-TCDD to as much as 100,000 tons per year (TPY) for carbon dioxide. For most contaminants the reporting threshold is 3 TPY or less. As a result, Wisconsin's "point source" emissions inventory contains data from many sources that are traditionally considered "area sources" (i.e., minor sources emitting less than 10 TPY of a toxic contaminant).

For purposes of the pilot study, however, only data for the smaller point sources in Wisconsin's emissions inventory were included. Specifically, the scope was limited to point sources with actual annual emissions below 10 tons for each hazardous air pollutant covered by the Clean Air Act. The rationale for this decision is that sources with emissions above that level should be regulated by a

federal MACT standard (Maximum Achievable Control Technology) for air toxics, while the Urban Area Study that the pilot study supports is intended to identify smaller "area" sources that might otherwise go unregulated.

Wisconsin's annual emissions inventory is not limited to any particular type of industry or process. If the total emissions for a source exceed the reporting threshold for a given pollutant, the source is required to provide information on any process emitting any amount of that pollutant. All SIC and SCC codes are, in theory, covered by this effort. In practice, many SIC and SCC codes are not responsible for air emissions above any of the reporting thresholds. In the Wisconsin pilot inventory, a few of these types of sources have been inventoried using area-source methods. Wisconsin's air emissions inventory rule includes all 49 pollutants covered by pilot study.

Each December, Wisconsin DNR mails hard copy and/or electronic update forms to every source on the existing emissions inventory. Sources are asked to update any out-of-date information and enter their activity data for that year. Responses are returned to the DNR and entered into the emissions inventory database. Sources are added to the mailing list when they are identified through permitting, compliance, or surveillance work. Annual emissions inventories are generally completed by August of the following year (e.g., the calendar year 1993 inventory was completed by August 1994).

The point source data submitted by Wisconsin are for calendar year 1993 and include emission estimates as reported by all sources in the three-county study area. Toxic emission estimates are made by sources and then reported to the DNR. Sources are required to report actual, annual emissions in lb/yr, and identify the method used to make the estimate (emission factor, stack test, material balance, MSDS, or "other"). These estimates account for any emission controls in place.

The DNR does not make its own estimates of toxic emissions for point sources. Instead, the DNR compliance inspector most familiar with the source is expected to review the reported emission estimates and verify their *reasonableness* (not necessarily their *accuracy*). In addition, the department runs a limited set of automated quality assurance checks once the data are entered into the electronic emissions inventory database. For the calendar year 1993 inventory, these internal quality assurance checks were not directly related to any of the quality assurance checks described in the protocol. They were intended to identify gross errors in the reported data. Any problems identified by the compliance inspector or the automated procedures are forwarded to the reporting source for correction. Reconciliation of point and area source data were unnecessary, since no sources on the point-source inventory came from the area-source categories evaluated. No attempt has been made to estimate how complete the point source inventory is, nor has any attempt been made to scale-up the point source emission estimates to account for missing sources.

CALCULATION METHODS

The following is a discussion of the methodology used for calculating point source emissions for the five source categories inventoried in the Wisconsin report. For each source category the process for identifying individual sources is reviewed, the methodology for estimating emissions is explained, sample calculations are shown, results are listed by county for each pollutant, references are cited, and the evaluation of and recommendations for the protocol is summarized.

Landfill Gas - Combustion and Fugitive Emissions

Landfill gas is produced by the anaerobic decomposition of organic materials, such as paper, food waste, yard waste, etc. Landfill gas production begins one to two years after waste placement, and may last from 10-60 years. Wisconsin requires that all landfills (operational or not) recover landfill methane for energy use, or flare the methane to reduce greenhouse gas emissions.

Source Identification

Protocol Section 3.2.1-SIC Codes

SIC code 4953- REFUSE SYSTEMS. This includes the category LANDFILL, SANITARY: Operation of.

Protocol Section 3.2.2-SCC/AMS Codes

SCC 50200601-Waste Gas Flares-provides emission factors [lb/MMBTU] for: benz(a)anthracene, benzo(a)pyrene, carbon tetrachloride, chrysene, fluoranthene, methylene chloride, naphthalene, PCBs, TCDD 2378, TCDF 2378, tetrachloroethene, 111 trichloroethane, trichloroethylene.

Protocol Section 3.2.3-New SCC/AMS Codes

The existing SCC/AMS codes adequately cover this category.

Protocol Section 3.3-Pollutants

13 pollutants were identified: arsenic, benz(a)anthracene, benzo(a)pyrene, carbon tetrachloride, chrysene, fluoranthene, methylene chloride, naphthalene, PCBs, TCDD 2378, TCDF 2378, tetrachloroethene, 111 trichloroethane, trichloroethylene.

Protocol Section 3.4-Identifying Facilities

While a complete inventory of operational landfill sites exists, comprehensive information on landfill sites that have closed up to 60 years ago does not exist. Wisconsin's total methane landfill gas produced (cu.ft.) was found from a Wisconsin Greenhouse Gas study (PSC/WDNR, 1995).

Air Toxic Emission Estimation

Protocol Section 4.1-Temporal Resolution

Methane production is presented for 1990 and 1995 in the Greenhouse Gas Emission study. The Wisconsin DNR Greenhouse Gas Group's database provided methane production for 1993. Methane production is assumed to be constant throughout the year.

Protocol Section 4.1- Spatial Resolution

The methane produced in the state was disaggregated to each county by the county's population fraction of the state.

Protocol Section 4.2-Emission Estimation Techniques (EETs)

Protocol Section 4.3-Overall Inventory Development

Protocol Section 4.4-Activity and Emission Units

Protocol Section 4.5-Scale-up for Missing Sources

The county methane volumes were doubled to account for CO_2 produced along with the methane, which is vented, rather than flared. The numbers were doubled again, to reflect the standard collection efficiency of 50%-- that is, 50% is collected and flared, while 50% escapes the flaring process despite the best available technology. When required, the methane was converted from cubic feet to MMBTU assuming $5*10^{-4}$ MMBTU per cuft. Emission factors from FIRE were then applied.

Sample Calculations

Emissions by county were calculated as follows:

When using <u>SCC 50200601</u> emission factors, County_Emis =

Wis_methane_flared * 4 * 5E-4 MMBTU/cu ft * County_pop_fraction * Emis_factor [lbs/MMBTU]

When using <u>SCC 50200601</u> emission factors, County_Emis =

Wis_methane_flared * 4 * County_pop_fraction * Emis_factor[lbs/cu.ft.]

Results

	Kenosha	Milwaukee	Racine
	(pounds)	(pounds)	(pounds)
Benz(a)anthracene	1.6E-05	1.2E-04	2.1E-05
Benzo(a)pyrene	2.8E-05	2.1E-04	3.9E-05
Carbon tet	0.18	1.3	0.25
Chrysene	0.007	0.05	0.01
Fluoranthene	0.18	1.3	0.25
Methylene Chloride	53	398	72.7
Naphthalene	270	2,000	370
PCBs	0.015	0.11	0.021
TCDD 2378	3.5E-05	2.6E-04	4.8E-05
TCDF 2378	4.4E-04	0.0033	6.0E-04
Tetrachloroethene	0.86	6.5	1.2
111 trichloroethane	2.5	19	3.5
Trichloroethylene	0.312	2.34	0.426

References

PSC/WDNR. Wisconsin Greenhouse Gas Emission Reduction Cost Study- Phase 2, Part A. Projections of Greenhouse Gas Emissions for Wisconsin. Public Service Corporation of Wisconsin/Wisconsin Department of Natural Resources. April, 1995.

Wisconsin Greenhouse Gas Emission Reduction Cost Study- Landfill Gas Production Spreadsheet. Public Service Corporation of Wisconsin/ Wisconsin Department of Natural Resources.

U.S. EPA. Air Emissions from Municipal Solid Waste Landfills- Background Information for Proposed Standards and Guidelines. EPA-450/3-90-011a. March 1991.

Evaluation of Protocol and Recommendations

The methodology of using emission factors (AP-42) for methane combustion is unsatisfactory for total landfill emissions. The emissions reported only represent toxics from the combustion and release of landfill gasses (CO₂ and CH₄.) A much larger source of air toxics from landfill sites may be from the volatilization of solvent and petroleum wastes, and heavy metals airborne in dust. Emissions are highly dependent on the content of the waste.

Residential Woodburning

Residential woodburning occurs in wood-burning stoves, wood-burning furnaces, fireplaces with and without inserts, firepits, and in combinations of these categories. Wood burned in fireplaces without inserts, fire pits, and wood burned in combination with other categories was classified as wood burned for pleasure use. The remainder of the wood is burned in wood-burning furnaces, wood-burning stoves, and fireplaces with inserts and was assumed to be used for primary and supplemental heating.

Source Identification

Protocol Section 3.2.1-SIC Codes

Residential woodburning is not an industrial activity covered by an SIC code.

Protocol Section 3.2.2-SCC/AMS Codes

Area Mobile Source codes available in FIRE (Factor Information Retrieval System) and AP-42 which cover residential woodburning were used to produce estimates of as many pollutants as possible. Seven AMS codes applied to residential woodburning. They are:

- 1. 2104008000 -- Total wood stoves and fireplaces.
- 2. 2104008001 -- Fireplaces -- general
- 3. 2104008010 -- Wood stoves residential-general.
- 4. 2104008030 -- Wood stoves-catalytic converters.
- 5. 2104008050 -- Non-catalytic, wood stoves-general.
- 6. 2104008051 -- Non-catalytic, wood stoves-conventional.
- 7. 2104008052 -- Non-catalytic, wood stoves- newer models.
- 8. 2104008053 -- Non-catalytic wood stoves-low emitting- pellet stoves.

SCC 10300903- Industrial Wood Fired Boilers was also used to provide emission factors when no better emission factor existed. This technique was not described in the protocol, but is widely used in the Wisconsin DNR (Hubbard), and was judged to be "reasonable" (McCrillis).

Emission estimates for residential woodburning were produced using appropriate SCC codes that pertain to fireplaces, wood stoves, and industrial boilers.

GLEI Protocol Section 3.2.3-New SCC/AMS Codes

The existing SCC/AMS codes adequately cover this category. The deviation in estimation technique is a result of inadequate emission factors for various toxics, rather than any problems with the SCC/AMS codes themselves.

GLEI Protocol Section 3.3-Pollutants

The Source Summary Database was used to construct a list of potential, expected target compounds emitted due to residential woodburning. Seven AMS codes were searched for residential woodburning and 17 expected pollutant emissions were identified. A search of the Source Summary Database for pollutants emitted from industrial wood-fired boilers (10100903) located an additional 7 possible target compounds.

Expected target compound emissions identified are:

SCC Code	SCC Code
<u>2104008%%</u>	<u>10100903</u>
1. 2,3,7,8 TCDD	1. Arsenic
2. 2,3,7,8 TCDF	2. Chromium VI
3. PCDD total	3. Cobalt
4. PCDF total	4. Lead
5. Ethelbenzene	5. POM
6. Benzo(a)pyrene	6. Mercury
7. Benz(a)anthracene	7. PCB

- 8. Cadmium
- 9. Chromium
- 10. Copper
- 11. Manganese
- 12. Naphthalene
- 13. Phenol
- 14. Chrysene
- 15. Fluoranthene
- 16. Nickel
- 17. PAH's

In order to compile the most extensive estimate of emissions due to residential woodburning in the state, Wisconsin's methods deviated from the protocol in that all AMS codes were applied, in order of relevance, when calculating emissions. In the case of calculating emissions from woodburning stoves, for example, factors found in the AMS codes 2104008010, 2104008050, and 10100903 were included.

Emission factors for 22 of the 24 total pollutants were gathered from the FIRE database. Benz(a)anthracene, benzo(a)pyrene, cadmium, chromium, chrysene, copper, fluoranthene, manganese, naphthalene, nickel, phenol, and PAH factors were obtained for AMS code 2104008050--Non-catalytic wood stoves-general.

2,3,7,8 TCDD, 2,3,7,8 TCDF, PCDD total, and PCDF total were obtained for AMS code 2104008010--Residential wood stoves general. Finally, emission factors for arsenic, chrome VI, cobalt, lead, mercury and POM were obtained from SCC 10100903--wood fired boilers.

Protocol Section 3.4-Identifying Facilities

1994 survey information (T. Mace, personal communication) regarding the volume of wood (in cords) burned in each Wisconsin Forest Survey Unit was provided for the pilot study. This information was provided as volume burned in stoves, furnaces, fireplace inserts, fireplaces, and combinations. Survey information contained the volume of wood (cords) burned for pleasure (all categories), secondary heat, and primary heat (Mace pers. comm.).

Air Toxic Emission Estimation

Protocol Section 4.1-Temporal Resolution

The data set quantifying residential wood use in Wisconsin is based on annual estimates of consumption by users. It is reasonable to assume that all residential woodburning occurs between September and April (six months). It was decided that the most accurate method of estimating wood use in subsequent years is to adjust the data set to reflect the number of heating-degree days for the given year of estimation. Data pertaining to residential wood use is not frequently gathered and may be scarce in other states.

Protocol Section 4.1-Spatial Resolution

Wood use estimates from Forest Survey Units were disaggregate to a county by county basis for calculation of emission estimates.

Protocol Section 4.2-Emission Estimation Techniques (EETs)

Protocol Section 4.3-Overall Inventory Development

Protocol Section 4.4-Activity and Emission Units

Protocol Section 4.5-Scale-up for Missing Sources

Expected pollutants located in the SSD are listed below. Emission factors, if available, were obtained from the most recent version of the FIRE database. No information is available on the proportion of the population with emission controls (catalytic wood stoves), or the effectiveness of these control measures over time. The population of catalytic wood stoves was assumed to be zero.

The estimates developed for the amount of wood burned are a representation of the total wood burned in each county. Therefore, no scale-up for missing sources is necessary. There is no possibility that emissions from residential woodburning were double counted.

1994 survey information regarding the volume of wood (in cords) burned in each Wisconsin Forest Survey Unit was supplied. This information was provided as volume burned in stoves, furnaces, fireplace inserts, fireplaces, and combinations. Survey information also contained the volume of wood (cords) burned for pleasure (all categories), secondary heat, and primary heat (Mace pers. comm.). Since the protocol dictates that counties serve as the functional unit, Forest Survey Unit data were disaggregate to county level as follows:

Pleasure and primary/secondary heating use was divided within each county based on the fraction of wood burned in wood-burning stoves, wood-burning furnaces, fireplaces with inserts, fireplaces (no insert), and firepits within the Forest Survey unit. Cords of wood burned in stoves, furnaces and fireplace inserts were summed, and wood burned in fireplaces, firepits, and combinations were summed. Emission factors of these two groups were assumed to be characterized as wood burning stoves and fireplaces.

The volume of wood was converted to weight, assuming 1.8 tons/cord (Mace pers. comm.) and normalized for the difference in heating degree days in 1993 compared to 1994- giving an estimate of 1993 consumption (Wisconsin Department of Administration 1994).

Cords of wood burned for pleasure were assumed to be proportional to the amount of single family detached housing in each county compared to the Forest Survey Unit total and that the number of fireplaces is equally distributed among counties. Cords burned for pleasure use in each county were calculated by multiplying the proportion of detached housing units in each county (U.S. Department of Commerce, Bureau of the Census 1990) relative to the survey unit total by the total number of cords burned for pleasure in the Forest Survey Unit.

Cords of wood burned for primary or secondary heat was assumed to be proportional to the number of households in the county that are primarily heated by wood compared to the total number of houses heated by wood within the Forest Survey Unit (U.S. Department of Commerce, Bureau of the Census 1990). Cords of wood burned in each county for primary and secondary heating was determined by multiplying the proportion of households in each county that are heated with wood relative to the survey unit total households heated with wood by the number of cords of wood burned as a primary or secondary heat source within the survey unit.

Sample Calculations

The following emission factors were derived from FIRE AMS code 2104008010 (wood-burning stoves): PCDDs, PCDFs, TCDD 2378, TCDF 2378.

The following emission factors were derived from FIRE AMS code 2104008050 (wood-burning stoves): benz(a)anthracene, benzo(a)pyrene, cadmium, chromium, chrysene, copper, fluoranthene, manganese, naphthalene, nickel, phenol, PAHs.

The following emission factors were derived from FIRE SCC code 10100903 (wood-fired boiler): arsenic, chrome VI, cobalt, lead, mercury, POM.

For Fireplace Calculations:

The following emission factors were derived from FIRE AMS code 2104008001 (Fireplaces): PCDDs, PCDFs, TCDD 2378.

The following emission factors were derived from FIRE AMS code 2104008010 (wood-burning stoves): TCDF 2378.

The following emission factors were derived from FIRE AMS code 2104008050 (wood-burning stoves): benz(a)anthracene, benzo(a)pyrene, cadmium, chromium, chrysene, copper, fluoranthene, manganese, naphthalene, nickel, phenol, PAHs.

The following emission factors were derived from FIRE SCC code 10100903 (wood-fired boiler): arsenic, chrome VI, cobalt, lead, mercury, POM.

Emission Calculation Example: Emissions of arsenic from residential wood stove use in Kenosha County:

EMS = AB * EF

where EMS = Emissions of arsenic

AB = Annual wood fuel use in wood stoves (tons)

EF = Emission factor (FIRE)

Total annual pounds of arsenic emitted by wood fuel in wood stoves, Kenosha County, 1993:

AB = 8964 tons wood $EF = 8.8 \times 10^{-5} \text{ lbs per ton}$

EMS = AB * EF

 $EMS = (8964 \text{ tons}) * (8.8 \times 10^{-5} \text{ lbs per ton})$

EMS = 0.789 lbs arsenic emitted

Results

		Wood stoves	Fireplaces	TOTAL
		(pounds)	(pounds)	(pounds)
Kenosha	Arsenic	0.789	0.441	1.230

County	Benz(a)anthracene	8.964	5.015	13.979
	Benzo(a)pyrene	53.783	30.092	83.875
	Cd	0.179	0.100	0.280
	Cr	0.00E+00	0.00E+00	0.00E+00
	Chrome VI	0.412	0.231	0.643
	Chrysene	89.639	50.153	139.792
	Co	1.165	0.652	1.817
	Cu	3.048	1.705	4.753
	Fluoranthene	71.711	40.123	111.834
	Pb	9.860	5.517	15.377
	Mn and compounds		0.702	1.957
	Hg	0.058	0.033	0.091
	Naphthalene Naphthalene	1290.8	722.21	2013.00
	Ni and compounds	0.179	0.100	0.280
	phenol	71.711	40.123	111.834
	PCDDs	0.026	0.004	0.040
	PCDFs	0.143	2.51E-3	0.22
		481.93	2507.66	6989.59
	POM	25.995	14.544	22.36
	TCDD 2378	6.63E-05	1.40E-04	2.07E-04
	TCDF 2378	0.032-03	0.002	0.006
	TCD1 2376	0.004	0.002	0.000
		Wood stoves	Fireplaces	TOTAL
		(pounds)	<u>(pounds)</u>	<u>(pounds)</u>
Milwaukee	Arsenic	1.000	2.219	3.219
County	Benz(a)anthracene	11.367	25.214	36.581
	Benzo(a)pyrene	68.204	151.282	219.486
	Cd	0.227	0.504	0.732
	Cr	0.00E+00	0.00E+00	0.00E+00
	Chrome VI	0.523	1.160	1.683
	Chrysene	113.673	252.137	365.810
	Co	1.478	3.278	4.756
	Cu	3.865	8.573	12.438
	Fluoranthene	90.938	201.709	292.648
	Pb	12.504	27.735	40.239
	Mn and compounds	1.591	3.530	5.121
	Hg	0.074	0.164	0.238
	Naphthalene	1636.89	3630.77	5267.66
	Ni and compounds	0.227	0.504	0.732
	phenol	90.938	201.709	292.648
	PCDDs	0.033	0.018	0.106
	PCDFs	0.181	1.3E-2	0.585
	PAHs 5	683.65	12606.83	18290.48
	POM	32.965	73.120	58.53
	TCDD 2378	8.41E-05	7.06E-04	7.90E-04
	TCDF 2378	0.005	0.011	0.016
		Wood stoves	Fireplaces	TOTAL
			(pounds)	
Racine	Arsenic	<u>(pounds)</u> 1.183	0.572	<u>(pounds)</u> 1.755
		1.183 13.444	0.572 6.495	1.755 19.939
County	Benz(a)anthracene	13.444	0.433	17.737

Benzo(a)pyrene	80.664	38.973	119.637
Cd	0.269	0.130	0.399
Cr	0.00E+00	0.00E+00	0.00E+00
Chrome VI	0.618	0.299	0.917
Chrysene	134.440	64.955	199.395
Co	1.748	0.844	2.592
Cu	4.571	2.208	6.779
Fluoranthene	107.552	51.964	159.516
Pb	14.788	7.145	21.933
Mn and compour	nds 1.882	0.909	2.792
Hg	0.087	0.042	0.130
Naphthalene	1935.93	935.34	2871.28
Ni and compound	ds 0.269	0.130	0.399
phenol	107.552	51.964	159.516
PCDDs	0.039	0.005	0.056
PCDFs	0.214	3.2E-03	0.319
PAHs	6721.99	3247.73	9969.73
POM	38.988	18.837	31.9
TCDD 2378	9.95E-05	1.82E-04	2.81E-04
TCDF 2378	0.006	0.003	0.009

References

Mace, T. Wisconsin Department of Natural Resources, Bureau of Forestry. Personal Communication.

Hubbards, Allen. Wisconsin Department of Natural Resources, Bureau of Air Management. Personal Communication. 3/22/95.

McCrillis, Robert. U.S. EPA. Telephone conversation, 3/22/95.

Wisconsin Department of Administration, 1991. 1990 Housing by Number of Units in Structure for Wisconsin. Counties and Municipalities.- Demographic services.

U.S. Department of Commerce, Bureau of the Census. 1993. CH-2-51. 1990 Census of housing, detailed housing characteristics-Wisconsin.

Moran, D. 1995. Wisconsin Energy Bureau, Wisconsin Department of Administration. Personal Communication.

Wisconsin Energy Bureau, Wisconsin Department of Administration. 1994. Wisconsin Energy Statistics- 1994.

Evaluation of Protocol and Recommendations

Wisconsin deviated from the protocol in two instances. The Source Summary Database (SSD) was searched for a variety of process related SCC/AMS codes. The SCC/AMS codes were used for wood-burning stoves, fireplaces and wood-fired boilers and emission factors relating to wood-

burning stoves, fireplaces, and also wood-fired boilers were combined when producing emission estimations.

Including this composite of process-related emission factors results in the most complete estimates of emissions from residential wood use possible. It is recommended that other states follow this procedure of including emission factors derived for related processes for residential woodburning, and possibly in other cases, if the situation warrants.

Data quantifying residential wood fuel use may be limited or difficult to locate in other states. However, in Wisconsin, residential wood is a contributor to local air pollution. Other states are recommended to investigate the opportunity to obtain data for residential woodburning, to include this source in their toxic emission inventory.

Commercial Dry Cleaning Operations

Perchloroethylene (PERC, tetrachloroethene, tetrachloroethylene) is one of the most common solvents used by dry cleaning establishments. This section focuses on emissions from commercial facilities. The sources of emissions in dry cleaning operations are process vents from machines, equipment leaks and clothing transfer.

Two basic types of dry cleaning machines are considered: vented "dry-to-dry" and "transfer." Transfer machines have a separate washer and dryer; clothes have to be manually transferred from washer to dryer. Dry-to-dry machines combine the washer and dryer into one piece of equipment, eliminating the transfer step. Basic control devices for these machines are refrigerated condensers and carbon absorbers.

Source Identification

Protocol Section 3.2.1-SIC Codes

Dry Cleaning establishments are grouped under SIC code 7211 - Laundry, Cleaning, and Garment Services.

Protocol Section 3.2.2-SCC/AMS Codes Protocol Section 3.3-Pollutants

The SSCs that describe PERC evaporation from dry cleaning operations are 40100101 (unit of activity in lbs PERC/lbs clothes) and 40100103 (unit of activity: lbs PERC/ton solvent consumed).

Protocol Section 3.4-Identifying Facilities

The PERC consumption and dry cleaning equipment (machine type and number, and control equipment type) data were obtained from the 1993 Initial Notification Report submitted by dry cleaning establishments as required under the NESHAP standard. The information collected from the initial notification document provided data for a total of 94 facilities that reported PERC as their main dry cleaning agent. Of the 94 facilities, 65 were located in Milwaukee County, 16 in Racine and 13 in Kenosha County.

Air Toxic Emission Estimation

Protocol Section 4.1-Temporal Resolution

Emission estimates are presented on an annual basis.

Protocol Section 4.1-Spatial Resolution

Individual facilities reported PERC consumption.

Protocol Section 4.2-Emission Estimation Techniques (EETs)

Protocol Section 4.3-Overall Inventory Development

Protocol Section 4.4-Activity and Emission Units

Protocol Section 4.5-Scale-up for Missing Sources

No generic emission factors were available in FIRE to calculate PERC emissions based on PERC consumption data. Therefore, emissions estimates were produced based on emission factors derived from information on the type of machine, control type and amount of PERC consumption.

The U.S. EPA has established the consumption levels of PERC that results in emitting 10 tons of PERC into the air to be 2100 gallons for dry-to-dry machines, and 1800 gallons for transfer machines (Federal Register vol 58, no.182, 1993; MPCA, 1995). Since the density of PERC is 13.55 lbs per gallon, 2100 gallons and 1800 gallons of PERC represent 14.2 tons and 12.2 tons of PERC, respectively.

Therefore, the fraction of PERC consumed by a dry-to-dry machine released into the air is: 10 Ton/12.2 Ton = 0.70 (or 70 percent.)

The fraction of PERC consumed by a transfer machine released into the air is: 10 Ton/14.2 Ton = 0.82 (or 82 percent.) The remainder of the PERC goes into waste.

Based on emissions data from Morris and Kepford (1990), for a dry-to-dry machine: 55 percent of the air releases are process emissions, while 45 percent are fugitive emissions. For transfers machines: 55 percent of the emissions are associated with fugitive emissions and 45 percent from process emissions. With process controls (carbon absorber, refrigerate condenser), the percent emissions from a dry-to-dry machine are reduced to 52 percent. For transfer machines emissions are reduced to 69 percent (Morris and Kepford, 1990; Smith, 1995).

Sample Calculations

The emission factors used to estimate county-wide PERC emissions were derived as follows:

Emissions [lbs PERC/Gallon of PERC consumed]=

[gallons PERC consumed]*[density of PERC (13.55lbs/gal)] x [type/control factor]

Where [type/control factor]= 0.70 for Dry-to-dry, no control

0.52 for Dry-to-dry, controlled 0.82 for Transfer, no control 0.69 for Transfer, controlled

Emission Calculation Example:

For Kenosha County, Dry-to-dry machines, with emission controls: Emissions = 1901 gal * 13.55 lb/gal * [0.52] = 13394 lbs.

For Kenosha County, Dry-to-dry machines, with no emission control: Emissions = 394 gal * 13.55 lb/gal * [0.70] = 3737 lbs.

Results

<u>County</u>	Machine Type	<u>Control</u>	<u>Factor</u>	Perc Used	Emissions
			(lbs/gal)	(gal/yr)	(lbs/yr)
Kenosha	DRY-TO-DRY	Y	7.046	1901	13394.44
	DRY-TO-DRY	N	9.48	394	3735.12
	TRANSFER	Y	9.35	200	1870
	TRANSFER	N	11.11	<u>165</u>	1833.15
	TOTAL			2660	20832.71
Milwaukee	DRY-TO-DRY	Y	7.046	15801	111333.8
	DRY-TO-DRY	N	9.48	1290	12229.2
	TRANSFER	Y	9.35	8442	78932.7
	TRANSFER	N	11.11	<u>160</u>	<u>1777.6</u>
	TOTAL			25693	204273.3
Racine	DRY-TO-DRY	Y	7.046	1200	8455.2
	DRY-TO-DRY	N	9.48	380	3602.4
	TRANSFER	Y	9.35	2550	23842.5
	TRANSFER	N	11.11	0	0
	TOTAL			4130	35900.1

References

"Health Based Review of the NESHAP for Perchloroethylene (PCE) Dry Cleaning Facilities", Report Draft Version 5.1, Edited by Chun Yi Wu, Minnesota Pollution Control Agency, Air Quality Division, April, 1995.

"Documentation of Revised Emission Factors for the Dry Cleaning Industry" Memorandum from Carolyn Norris and Kim Kepford, Radian Corporation. To: Dry Cleaning NESHAP Project File. December 14, 1990. EPA Docket No. A-88-11, Document No. II-B-35, Research Triangle Park, Raleigh, NC, 27711.

Federal Register, Vol. 58 No. 182. Sept. 22, 1993. United States Government Printing Office, Superintendent of Documents. Washington, DC 20402.

Gasoline Service Stations

Source Identification

Protocol Section 3.2.1-SIC Codes

The primary SIC code for this category is 5541 (Gasoline Service Stations). There are no other applicable SIC codes.

Protocol Section 3.2.2-SCC/AMS Codes

The RAPIDS SCC/AMS table was used to identify appropriate SCC and AMS codes for this source category. Filtering on SOURCE CODE = "COM/INS,SIC5541" yielded the following results:

- 1. Gasoline Retail Operations (SCCs 4-06-003-%%). Also known as Stage I, this refers to emissions from filling of storage tanks at gas stations. Specific codes are -01,-02,-05,-06,-07,-99.
- 2. Filling Vehicle Gas Tanks (SCCs 4-06-004-%%). Also known as Stage II, this refers to emissions from vehicle refueling at gas stations. Specific codes are -01,-02,-03,-99.
- 3. Petroleum & Petroleum Product Storage, Gasoline Service Stations (AMSs 25-01-060-%%%). This group of AMS codes covers all area source gas station emissions for gasoline products. Specific codes are -000,-050,-051,-052,-053,-100,-101,-102,-103,-200,-201.
- 4. Petroleum & Petroleum Product Storage, Diesel Service Stations (AMSs 25-01-070-%%%). This group of AMS codes covers all area source gas station emissions for diesel products. Specific codes are -000,-050,-051,-052,-053,-100,-101,-102,-103,-200,-201.

Protocol Section 3.2.3-New SCC/AMS Codes

The existing SCC and AMS codes appear to adequately cover this source category. No requests for new codes are necessary.

Protocol Section 3.3 -Pollutants

Sales of leaded gasoline in 1993 were assumed to be negligible (i.e., 0); these fuels have been phased out. Evaporative emissions from diesel fuels at service stations were also assumed to be negligible, diesel fuel has relatively low volatility. Therefore, only the expected pollutants from evaporative emissions of unleaded gasoline were considered. A review of the source summary databases indicated that gasoline service stations are a source of emissions for at least eight target pollutants: ethylbenzene, naphthalene, 1,2-dichloroethane, phenol, carbon tetrachloride, trichloroethylene, 1,1,1-trichloroethane, and PCDFs (1,2,3,6,7,8-HCDF also specifically identified). However, Wisconsin was unable to find any means of estimating emissions for the last five (i.e., nothing in AP-42, no FIRE 1994 emission factors, not identified in speciation profiles, no models, and no equations). Only ethylbenzene, naphthalene, and 1,2-dichloroethane were inventoried.

Protocol Section 3.4-Identifying Facilities

Due to its use of data that is not commonly available to other states, Wisconsin's methodology deviated from the protocol. Wisconsin has developed a database of gas stations in ozone non-attainment counties (which includes the entire study area) to facilitate Stage II vapor recovery compliance tracking. This database contains one record for each gas station which responded to a State notification requirement. The data include name of station, location, facility contacts, and

average monthly sales of unleaded gasoline (i.e., diesel not included) for a 24-month period covering 1991 and 1992. This database is considered to be the most accurate and complete electronically-available database on this subject in the State. It includes over 400 gas stations in the three county study area.

Emission Estimation

Protocol Section 4.1 - Temporal Resolution

Monthly gasoline sales for the inventory year (1993) were assumed to be identical to monthly sales over the two-year period represented in the database (1991-1992). Furthermore, each facility in the database was assumed to have been in business for the entirety of 1993. Monthly average sales numbers in the database are therefore multiplied by 12 to get total 1993 sales estimates for the sources in the database.

Protocol Section 4.1 - Spatial Resolution

Even though data are available at the source level for non-attainment counties, gasoline stations were treated as county-wide area sources in this study for the following reasons:

- 1. Other states will probably treat gas stations as an area source (data consistency);
- 2. Wisconsin will have to treat gas stations in ozone attainment counties as an area source (data consistency);
- 3. In the judgement of the Wisconsin inventory preparers, the end use of the SWLM inventory does not demand point source accuracy for these sources.

Protocol Section 4.3 -EETs

Table 4-3 of the protocol indicates that emission factors are to be used as the first priority to estimate emissions from SCC-AMS codes 4-06-%%%-%%.

For 4-06-003-%%, emission factors are available for 1,2-dichloroethane and ethylbenzene. However, the ethylbenzene factor in RAPIDS appears to be in error. It is expressed as lb/gal gas when it correctly should be lb/1000gal gas, as corrected in FIRE 1994. As for 4-06-004-%%, emission factors are only available for 1,2-dichloroethane.

A source-specific speciation profile was found in Table 3-2 of EPA's Stage II Technical Guidance (EPA-450/3-91-022a, November 1991). Since the profile in SPECIATE is rated C, and the profile in the technical guidance is considered better, it was assumed at least C-rated and thus acceptable for use. The source-specific and the generic speciation profiles both give data for two of the target pollutants: ethylbenzene and naphthalene.

In summary, the EET for 1,2-dichloroethane was generic emission factors, while the EET for ethylbenzene and naphthalene was source-specific speciation.

Protocol Section 4.3 - Facility and Area Source Reconciliation

Although the Wisconsin point-source inventory included a few gasoline stations, there were no emission estimates for any of them. This assures that the area-source calculation is not double-counting emissions from point sources.

Protocol Section 4.3 - Emission Controls

(Stage 1.) It was considered most consistent with the protocol to avoid the use of emission factors that include controls. Uncontrolled emission factors were used, and a control efficiency was back-calculated by comparing the uncontrolled and controlled emission factors in FIRE. This results in an estimated control efficiency of 95.5%, which is consistent with AP-42 (Stage I vapor recovery control typically 93 to 100% effective). This assumes that the control efficiency for volatile HAPs is identical to that for total VOC.

(Stage 2.) The DNR only approves Stage 2 vapor recovery devices certified by the California Air Resources Board (CARB) and CARB only certifies devices that are 95% effective or better. The control efficiency for the pilot study inventory for Stage II processes with vapor recovery devices was assumed to be 95%. Again, this assumes that the control efficiency for volatile HAPs is identical to that for total VOC. Most service stations did not have Stage 2 vapor recovery in place for the inventory year, 1993. Emission estimates are made based on vapor recovery installation dates as recorded in the state's compliance tracking database.

Protocol Section 4.3 -Scale-Up For Missing Sources

As expected, less than a 100% response was received to the information request that was used to generate the gas station database. After months of follow-up, data are still being added. More than 90% of the sources are now estimated to be in the database. Taking a conservative approach, 10% of the sources that should be in the database were assumed not to be, and therefore the throughput data were scaled up appropriately. Furthermore, the data are based on responses to a notification requirement which did not apply to sources with tanks smaller than 2000 gallons. Based on Table 4-3 from EPA's Stage II Technical Guidance, 2.4% of gasoline sales were estimated to come from sources with tanks smaller than 2000 gallons. An additional adjustment was made to the throughput to account for these unregulated small sources.

Sample Calculations

(1) Estimated average monthly gasoline sales from stations in DNR Database (MONAVG):

Kenosha 4,924,245.4 gal Milwaukee 26,286,881.2 gal 5,011,560.3 gal Racine

(2) Estimated Annual Gasoline Sales for ALL Stations (TOTAL):

Annualize, Scale-Up for Missing Sources, Scale-Up for Unregulated Small Sources.

TOTAL = MONAVG*12*1.100*1.024i.e.,

Kenosha 66,560,041 gal/yr Milwaukee 355,314,516 gal/yr Racine 67,740,258 gal/yr

- (3) Estimated throughput for Stage 1 displacement losses:
 - a. Uncontrolled sources (2.4% of all sales, i.e., ST1U = TOTAL*0.024)

1,597,441 gal/vr Kenosha Milwaukee 8,527,548 gal/yr Racine 1,625,766 gal/yr

b. Controlled sources (ST1C = TOTAL-ST1U)

Kenosha 64,962,600 gal/yr Milwaukee 346,786,968 gal/yr Racine 66,114,492 gal/yr

- (4) Estimated throughput for Stage 2 displacement losses:
 - a. Controlled sources (ST2C; estimate based on compliance tracking database)

Kenosha 6,410,157 gal/yr Milwaukee 45,399,805 gal/yr Racine 6,526,695 gal/yr

b. Uncontrolled sources (TOTAL-ST2C)

Kenosha 60,149,884 gal/yr Milwaukee 309,914,711 gal/yr Racine 61,213,563 gal/yr

(5) Estimated Stage 1 Displacement Emissions:

CE = 0.000 for uncontrolled splash-fill CE = 0.955 for controlled submerged-fill

a. 1,2-Dichloroethane

EF = 1.53E-06 lb/gal for uncontrolled splash-fill

EF = 9.76E-07 lb/gal for uncontrolled submerged-fill

Kenosha:1.53E-06 * 1,597,441 = 2.4441 lb (from uncontrolled sources) 9.76E-07 * 64,962,600 * (1-0.955) = 2.8532 lb (from controlled sources)

Milw.: 1.53E-06 * 8,527,548 = 13.0471 lb (from uncontrolled sources)

9.76E-07 * 346,786,968 * (1-0.955) = 15.2309 lb (from controlled sources)

Racine: 1.53E-06 * 1,625,766 = 2.4874 lb (from uncontrolled sources) 9.76E-07 * 66,114,492 * (1-0.955) = 2.9037 lb (from controlled sources)

b. Ethylbenzene (based on source-specific speciation)

 $EF = 0.001 * EF_{VOC}$

 $EF_{VOC} = 0.0115$ lb/gal for uncontrolled splash-fill

 $EF_{VOC} = 0.0073$ lb/gal for uncontrolled submerged-fill

EF = 1.15E-05 lb/gal for uncontrolled splash-fill

EF = 7.3E-06 lb/gal for uncontrolled submerged-fill

Kenosha:1.15E-05 * 1,597,441 = 18.3706 lb (from uncontrolled sources) 7.3E-06 * 64,962,600 * (1-0.955) = 21.3402 lb (from controlled sources)

Milw.: 1.15E-05 * 8,527,548 = 98.0668 lb (from uncontrolled sources)

7.3E-06 * 346,786,968 * (1-0.955) = 113.9195 lb (from controlled sources)

Racine: 1.15E-05 * 1,625,766 = 18.6963 lb (from uncontrolled sources)

c. Naphthalene (based on source-specific speciation)

 $EF = 0.005 * EF_{VOC}$

 $EF_{VOC} = 0.0115$ lb/gal for uncontrolled splash-fill

 $EF_{VOC} = 0.0073$ lb/gal for uncontrolled submerged-fill

EF = 5.75E-05 lb/gal for uncontrolled splash-fill

EF = 3.65E-05 lb/gal for uncontrolled submerged-fill

Kenosha:5.75E-05 * 1,597,441 = 91.8529 lb (from uncontrolled sources)

3.65E-05*64,962,600*(1-0.955) = 106.7011 lb (from controlled sources)

Milw.: 5.75E-05 * 8,527,548 = 490.3340 lb (from uncontrolled sources)

3.65E-05*346,786,968*(1-0.955) = 569.5976 lb (from controlled sources)

Racine: 5.75E-05 * 1,625,766 = 93.4815 lb (from uncontrolled sources)

3.65E-05*66,114,492*(1-0.955) = 108.5931 lb (from controlled sources)

(6) Estimated Stage 2 Displacement and Spillage Emissions:

CE = 0.000 for displacement losses from uncontrolled vehicle refueling

CE = 0.950 for displacement losses from controlled vehicle refueling

Throughput for spillage emissions = TOTAL

a. 1,2-Dichloroethane

EF = 1.46E-06 lb/gal for displacement losses from vehicle refueling

EF = 8.85E-08 lb/gal for spillage losses

Kenosha:1.46E-06 * 60,149,884 = 87.8188 lb (displacement - uncontrolled sources)

1.46E-06 * 6,410,157 * (1-0.95) = 0.4679 lb (displacement - controlled sources)

8.85E-08 * 66,560,041 = 5.8906 lb (spillage from all sources)

Milw.: 1.46E-06 * 309,914,711 = 452.4755 lb (displacement - uncontrolled sources)

1.46E-06 * 45,399,805 * (1-0.95) = 3.3142 lb (displacement - controlled sources.)

8.85E-08 * 355,314,516 = 31.4453 lb (spillage from all sources)

Racine: 1.46E-06 * 61,213,563 = 89.3718 lb (displacement - uncontrolled sources)

1.46E-06 * 6,526,695 * (1-0.95) = 0.4764 lb (displacement - controlled sources)

8.85E-08 * 67,740,258 = 5.9950 lb (spillage from all sources)

b. Ethylbenzene (based on source-specific speciation)

 $EF = 0.001 * EF_{VOC}$

 $EF_{VOC} = 1.1E-02$ lb/gal for displacement losses from vehicle refueling

 $EF_{VOC} = 7.0E-04$ lb/gal for spillage losses

EF = 1.1E-05 lb/gal for displacement losses from vehicle refueling

EF = 7.0E-07 lb/gal for spillage losses

Kenosha:1.1E-05 * 60,149,884 = 661.6487 lb (displacement - uncontrolled sources)

1.1E-05 * 6,410,157 * (1-0.95) = 3.5256 lb (displacement - controlled sources)

7.0E-07 * 66,560,041 = 46.5920 lb (spillage from all sources)

Milw.: 1.1E-05 * 309,914,711 = 3409.0618 lb (displacement - uncontrolled sources)

1.1E-05 * 45,399,805 * (1-0.95) = 24.9699 lb (displacement - controlled sources.)

7.0E-07 * 355,314,516 = 248.7202 lb (spillage from all sources)

Racine: 1.1E-05 * 61,213,563 = 673.3492 lb (displacement - uncontrolled sources)

1.1E-05 * 6,526,695 * (1-0.95) = 3.5897 lb (displacement - controlled sources)

7.0E-07 * 67,740,258 = 47.4182 lb (spillage from all sources)

c. Naphthalene (based on source-specific speciation)

 $EF = 0.005 * EF_{VOC}$

EF_{VOC} = 1.1E-02 lb/gal for displacement losses from vehicle refueling

 $EF_{VOC} = 7.0E-04$ lb/gal for spillage losses

EF = 5.5E-05 lb/gal for displacement losses from vehicle refueling

EF = 3.5E-06 lb/gal for spillage losses

Kenosha:5.5E-05 * 60,149,884 = 3308.2436 lb (displacement - uncontrolled sources)

5.5E-05 * 6,410,157 * (1-0.95) = 17.6279 lb (displacement - controlled sources)

3.5E-06 * 66,560,041 = 232.9601 lb (spillage from all sources)

Milw.: 5.5E-05 * 309,914,711 = 17045.3091 lb (displacement - uncontrolled sources)

5.5E-05 * 45,399,805 * (1-0.95) = 124.8495 lb (displacement - controlled sources.)

3.5E-06 * 355,314,516 = 1243.6008 lb (spillage from all sources)

Racine: 5.5E-05 * 61,213,563 = 3366.7460 lb (displacement - uncontrolled sources)

5.5E-05 * 6,526,695 * (1-0.95) = 17.9484 lb (displacement - controlled sources)

3.5E-06 * 67,740,258 = 237.0909 lb (spillage from all sources)

Results

Estimated Calendar Year 1993 Air Emissions (in pounds)

<u>Pollutant</u>	<u>Kenosha</u>	<u>Milwaukee</u>	Racine
1,2-Dichloroethane	99.5	515.5	101.2
Ethylbenzene	751.5	3894.7	764.8
Naphthalene	3757.4	19473.7	3823.9

References

- 1. U.S. EPA. Technical Guidance Stage II Vapor Recovery Systems for Control of Vehicle Refueling Emissions at Gasoline Dispensing Facilities. EPA-450/3-91-022. November 1991.
- 2. DNR Database of Average Monthly Gasoline Sales in Ozone Non-Attainment Counties (MONAVG). Unpublished. May 1995.

Publicly Owned Treatment Works

Pollutants are emitted from wastewater treatment plants depending on contents of the inflow stream. Publicly Owned Treatment Works (POTW) inflow rates and air toxic emissions were estimated in the

WDNR Study: Hazardous Air Pollutant Emission from Wastewater Treatment Plants (1990). The Wisconsin report uses data from the previous report scaled-up for 1993 population figures.

Source Identification

Protocol Section 3.2.1-SIC Codes

SIC code 4952 was used in covering sewerage systems in reporting of POTW air emissions.

Protocol Section 3.2.2-SCC/AMS Codes

When searching for potential pollutants SCC 501007%%, which was found in the FIRE database, was used.

Protocol Section 3.2.3-New SCC/AMS Codes

No new SCC's are required.

Protocol Section 3.3-Pollutants

A search of the Source Summary Database located 23 (from the GLC list of 49) possible toxic emissions.

Protocol Section 3.4-Identifying Facilities

Generally, there is one POTW in each county, with some of the heavily populated counties having more. In the 1990 report POTW's were identified. Larger POTW's are required to report as point sources and consequently were not included in the pilot study report. In the spatial scope of this project there were two POTW's for which estimates were made: 1) Kenosha County and 2) Racine County.

Air Toxic Emission Estimation

Protocol Section 4.1-Temporal Resolution

Emission estimates are presented on an annual basis.

Protocol Section 4.1-Spatial Resolution

Emission estimates are presented at the individual POTW level. Emissions from each POTW are then included in the county-wide estimate. In the counties in this report there is one POTW per county.

Protocol Section 4.2-Emission Estimation Techniques (EETs)

Process simulation software (NOCEPM model) was used in the 1990 report to estimate emissions at POTW's. Input data for the process simulation was provided by the POTW's to the DNR. The inflow to POTW's was assumed to be the same in 1993 as when the estimates were produced. The estimated amount of toxics emitted by the increased population was then estimated.

Protocol Section 4.3-Overall Inventory Development

Protocol Section 4.4-Activity and Emission Units

Protocol Section 4.5-Scale-up for Missing Sources

In the estimate of 1993 emissions from POTW's, data collected previously, available in an existing Wisconsin database, was used. All estimates were provided in pounds produced annually. No scale-up for missing sources is considered necessary.

Sample Calculations

Estimated methylene chloride emissions at the Kenosha County POTW 1993

Estimated methylene chloride emissions in 1986 = 683 lbs

Population increase 1986-1993 = 5.94%

Methylene chloride emission estimate for $1993 = 683 \times 1.0594 = 723.6 \text{ lbs}$

Results

Only one POTW (in Kenosha County) reported emissions of any toxics in the protocol. Estimated emission for 1993 was calculated to be 723.6 lbs of methylene chloride.

References

WDNR Bureau of Air Management. 1990. Hazardous Air Pollutant Emissions from Wastewater Treatment Plants. Pub. AM 050-090.

Non-road Engines

Emissions from non-road engines includes diesel engines (construction equipment), gasoline four-stroke engines (construction equipment, lawn and garden equipment, "inboard" boat motors, etc.), and gasoline two-stroke engines ("outboard" boat motors, lawn and garden equipment, snowmobiles, etc...).

Information regarding emission factors for these sources is sparse. A literature search was performed and emission factors were composed using the best information available, often using engineering estimations.

Wisconsin offers exceptional opportunity for recreational boating and snowmobiling. Wisconsin's emissions from these types of two-stroke motors are probably higher (per capita) than for most other states. Emissions from recreational marine and snowmobile use are specifically determined from Wisconsin survey and registration data.

Source Identification

GLEI Protocol Section 3.2.1-SIC Codes

Non-road engines, as applied, are not an industrial activity covered by an SIC code.

GLEI Protocol Section 3.2.2-SIC/AMS Codes

AMS codes available in FIRE and AP-42 which cover internal combustion of appropriate fuels were used to produce estimates of as many pollutants as possible. These are:

1. SIC 20200102	Internal Combustion, Industrial, Diesel Fuel, Uncontrolled
2. SIC 20100101	Turbine, Electric Generation, Diesel/Fuel oil, assume uncontrolled
3. SIC 20200301	Reciprocating, Gasoline, Uncontrolled
4. SIC 20300301	Reciprocating, Gasoline, Uncontrolled

5. A2201001000 -- Gasoline: Light Duty Highway Vehicles

Speciation profiles for VOC and Particulate Matter from the California Air Resources Board (CARB, 1991) were used when no better emission factor existed. Emission factors from scientific literature were used and engineering estimates were performed when these sources were considered defensible.

GLEI Protocol Section 3.2.3-New SCC/AMS Codes

No new codes are required.

GLEI Protocol Section 3.3-Pollutants

Emission factors were derived from a variety of sources:

Diesel Engines: emission factors from the FIRE database were obtained from:

SIC code 20200102 (Reciprocating Diesel)--benz(a)anthracene, benzo(a)pyrene, chrysene, fluoranthene, mercury, naphthalene, PAH, VOC and PM.

CARB particulate speciation profile No. 118 (Vehicular Sources- Diesel) speciates cadmium, manganese, and mercury. CARB VOC speciation profile No. 561 (Diesel Exhaust (aldehydes in emissions)) speciates ethylbenzene.

SIC Code 20100101 (Diesel/Fuel Oil Turbine)--arsenic, chromium, chrysene, cobalt, copper, nickel.

Four-Stroke Gasoline Engines. Emission factors from the FIRE database were obtained from:

SIC code 20200301/20300301--hydrocarbons and particulate matter.

For small four-stroke engines, emission factors for hydrocarbons (VOC) and particulate matter were derived or taken from SAE paper No. 910560 specifically for engines of 4 horsepower (HP), 12 HP, and 18 HP.

CARB particulate speciation profile No. 117 (Vehicular Sources- Gasoline) speciates chromium, cobalt, copper, manganese, nickel. CARB VOC speciation profile No. 527 (Non-Catalyst Exhaust (Aldehydes in Emissions)) speciates ethylbenzene.

AMS code 2201001000 (Light Duty Highway Vehicles)-- naphthalene.

In addition, some emission factors were determined from SAE paper No. 902116, using Volkswagen Jetta and Audi 100 data (leaded fuel, no catalytic converter)--benz(a)anthracene, benzo(a)pyrene, chrysene, fluoranthene, and PAH.

Two-Stroke Engines: emission factors for two-stroke engines were the most complicated to determine.

For 5 horsepower and 0.8 horsepower engines, SAE paper No. 910560 was used to determine PM and HC.

For snowmobiles, information from SAE paper No. 740735 was used to determine PM and HC.

For outboard motors, SAE paper No. 740737, No. 901597, and the U.S. EPA Non-Road study were used to determine Hydrocarbons. Particulate matter was estimated.

CARB particulate speciation profile No. 115 (Static IC Engines-Gasoline) provided chromium, cobalt, copper, manganese, nickel. CARB VOC speciation profile No. 502 (Non-Catalyst Light Duty Vehicles- Exhaust) provided ethylbenzene.

For two-stroke engines, information from U.S. EPA (Stage II vehicle refueling) was used to determine naphthalene and 1,2 dichloroethane, based on ethylbenzene.

Pollutants Identified for Non-road Engines

Pollutants Identified	Diesel Engines	Two-Stroke Engines	Four-Stroke Engines
Arsenic	Χ		
Benz(a)anthracene	X	X	X
Benzo(a)pyrene	X	X	X
Cadmium	X		
Chromium	X	X	X
Chrysene	X	X	X
Cobalt	X	X	X
Copper	X	X	X
Dioxins*			
Ethylbenzene	X	X	X
Fluoranthene	X	X	X
Lead	X		
Manganese & comps	X	X	X
Mercury	X		
Naphthalene	X	X	X
Nickel & comps.	X	X	X
PAHs	X	X	X

^{*} Dioxins are expected; no reliable emission factor could be determined

GLEI Protocol Section 3.4-Identifying Facilities

Information regarding diesel engine population, two-stroke motors except for snowmobiles and recreational marine, and four-stroke motors except for recreational marine, were obtained from the Wisconsin DNR-Bureau of Air Management (WDNR).

Information regarding recreational marine use came from the Wisconsin DNR-Bureau of Air Management and Bureau of Research (WDNR 1993 and WDNR 1991).

Information regarding snowmobile use came from the Wisconsin DNR-Bureau of Community Assistance (WDNR 1995) and Wisconsin Department of Development, Division of Tourism (Tourism 1993).

Air Toxic Emission Estimation

GLEI Protocol Section 4.1-Temporal Resolution

Diesel use and general small engine use (two-and four-stroke, does not include snowmobile and recreational marine) is based on estimated annual consumption.

Recreational marine emissions occur during the six month period between April and October. Snowmobile emissions are assumed to occur between October and April.

GLEI Protocol Section 4.1-Spatial Resolution

Emissions were calculated on a county-by-county basis.

Diesel emissions and general gasoline engine emission required a disaggregation, based on population fraction, of Wisconsin's six-county ozone non-attainment area (**Kenosha**, **Milwaukee**, **Racine**, Ozaukee, Washington, and Waukesha Counties).

For recreational marine, data regarding fuel sales and boating activity were provided at the county level.

For snowmobile use, registration was provided on a county level for Wisconsin residents and by the state or province (Canada) for out-of-state registered snowmobiles. It was considered most reasonable to assign this total pool of snowmobilers to the counties based on the fraction of Snowmobile Trail Miles that each county has in the state.

GLEI Protocol Section 4.2-Emission Estimation Techniques (EETS)

Determining the emissions from internal combustion engines burning gasoline or diesel is a difficult problem. For many compounds of interest, the emissions associated with the use of one engine is near the limit of detection. However, multiplying this small emission per engine by the widespread population of internal combustion engines may result in considerable total emissions.

The emission factor from each engine often depends very strongly on the duty cycle, or conditions of use, under which the engine operates. Uncertainty in the operating conditions of a "typical" engine could be a major source of error in determining emissions.

Determining the population of engines, and amount of use, is challenging. Often, an engine will operate in a different location than where the engine is registered. For example, a snowmobile may be registered in a large city, yet operate entirely several hundred miles away. Voluntary surveys of amount of recreational use are prone to wide errors, compared to actual use. For example, survey respondents may subconsciously report the amount of time they *wish* they used their boat, rather than their actual activity.

One particularly surprising result was that in general, a two-stroke engine (such as found on a common walk-behind lawn mower, outboard motor or snowmobile) exhausts about 25-35% of the gasoline put in the tank as uncombusted hydrocarbons (raw fuel) (SAE No. 740735, Mele, Lein). The U.S. EPA has developed new phase 1 and phase 2 emissions standards for small engines for May 1996 and May 1997. While hydrocarbon emissions for utility engines

are expected to drop 90% and marine engines by 70%, the U.S. EPA does not expect the complete turnover of pre-standard engines until the year 2020, at the earliest (WDNR 1994).

GLEI Protocol Section 4.3-Overall Inventory Development

Development of Emission Factors:

Diesel emission factors were selected from FIRE SIC 20200102 (reciprocating diesel engines) when available, from SIC 20100101 (diesel/fuel oil turbines) when no better data were available, and speciated from VOC and PM emission factors from SIC 20200102.

Diesel Emission Factors

Compound	SIC 20200102 (lb/MMBTU)	SIC20100101 (lb/MMBTU)	derived from PM species 118 (lb/MMBTU)	derived from VOC species 561 (lb/MMBTU)	FACTOR USED: (lb/MMBTU)
Arsenic		4.90E-06	9.30E-07		4.90E-06
Arsenic		4.90E-00	9.30E-0/		4.90E-06

Benz(a)anthracene	1.68E-06		ĺ	1.68E-06
Benzo(a)pyrene	1.88E-07			1.88E-07
		4.20F.06	2.005.05	2.000.05
Cd		4.20E-06	2.08E-05	2.08E-05

Cr		4.70E-05	2.79E-06	4.70E-05
Chrysene	3.53E-07			3.53E-07
Со		9.10E-06	1.86E-06	9.10E-06

Cu	1.30E-03	9.30E-05	1.30E-03
1,2 Dichloroethane			
Dioxins; 2378 Equiv			

Ethylbenzene			1.93E-02	1.93E-02
Fluoranthene	7.61E-06			7.61E-06
Pb		5.80E-05		5.80E-05

Mn and compounds		7.13E-06	7.13E-06
Hg	3.01E-07	7.75E-06	7.75E-06
Naphthalene	8.48E-05		8.48E-05

Ni and compounds		1.20E-03		1.20E-03
PAHs	1.68E-04			1.68E-04
VOC	32.1			

particulate matter	0.31		

Four-Cycle Emission Factors for Generic "Car-like" Engines

Compound	SIC 20200301 /SIC20300301 leaded fuel (g/HP-hr)	A2201001000 Light Duty Hwy Vehicles (g/HP-hr)	SAE #902116 Jetta/Audi 100 leaded fuel (g/HP-hr)	U.S. EPA Non- road (g/HP-hr)	From CARB VOC sp. 527 PM sp. 117 (g/HP-hr)	FACTOR (lb/gal)	RS USED (g/HP-hr)
Arsenic							
Benz(a)anthracene		7.33E-07 *	1.68E-05			4.57E-07	1.68E-05
Benzo(a)pyrene			1.34E-05			3.64E-07	1.34E-05
Cd							
Cr					3.0E-05	8.15E-07	3.00E-05
Chrysene			2.74E-05			7.44E-07	2.74E-05
Co Cu					3.0E-05	8.15E-07	3.00E-05
Cu					3.0E-05	8.15E-07	3.00E-05
1,2 Dichloroethane							
Dioxins; 2378 Equiv							
Ethylbenzene					0.047428	1.29E-03	4.74E-02
Fluoranthene			1.41E-04			3.84E-06	1.41E-04
Pb							
Mn and comp.					3.0E-05	8.15E-07	3.00E-05
Hg							
Naphthalene		4.08E-3				1.11E-04	4.08E-03
Ni and compounds					3.0E-05	8.15E-07	3.00E-05
PAHs			3.98E-04			1.08E-05	3.98E-04
particulate matter	0.327			0.06		1.63E-03	6.00E-02
hydrocarbons	6.68					1.81E-01	6.68

^{*} Benz(a)anthracene average of two factors provided by FIRE for LDHWV

Factors from SIC 20200301/20300301 and EPA Non-Road were given in grams per horsepower hour (g/HP-hr). Factors from AMS 220100000 and SAE paper number 902116 were given in grams per mile traveled.

Assuming 25 miles per gallon, knowing 2.2044 E-3 pounds per gram, and using 38.809 g/HP-hr per lb/gal (derived from the U.S. EPA Non-Road study), units are converted to pounds/gallon-of-gasoline and pounds/HP-hr.

Emission Factors for Small Four-Cycle Engines

	generic-	<4.5 HP	12 HP	18 HP
Compound	generic- car-like	<4.5 HP 4-stroke	12 HP 4-stroke	18 HP 4-stroke
	(g/HP-hr)	(g/HP-hr)	(g/HP-hr) 267	(g/HP-hr)

Arsenic				
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05
Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05

Benzo(a)pyren	1.34E-05	1.34E-05	1.34E-05	1.34E-05
Cd				

Cr	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Chrysene	2.74E-05	2.74E-05	2.74E-05	2.74E-05
,				

Со	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04
Cu	3.00E-05	3.12E-04	3.00E-05	1.00E-04

1,2 Dichloroethane		
1,2 Biomorocalano		
Dioxins; 2378 Equiv		

Ethylbenzene	4.74E-02	1.80E-01	4.07E-02	4.22E-02
Fluoranthene	1.41E-04	1.41E-04	1.41E-04	1.41E-04

Pb				
Mn and compounds	3.00E-05	3.12E-04	3.00E-05	1.00E-04

Mercury				
	_			_
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03
Naphthalene	4.08E-03	4.08E-03	4.08E-03	4.08E-03

Ni and compounds	3.00E-05	3.12E-04	3.00E-05	1.00E-04
PAHs	3.98E-04	3.98E-04	3.98E-04	3.98E-04
, ,	0.002 0	0.002 0 .	0.002 0 .	0.002 0

voc	6.68	24.37	5.5	5.70
particulate matter	0.06	0.62	0.06	0.20

hydrocarbons	6.68	24.37	5.5	5.70

Emissions for small four-stroke engines use the "generic car-like" emissions as a baseline when no better emission factors could be determined.

SAE paper No. 910560 (White, Carroll and Hare) presents hydrocarbon and particulate matter data for three different walk-behind mowers, all around 4 HP. These emissions were averaged for hydrocarbon and particulate matter emission factor for four-stroke engines less than 4.5 HP. Hydrocarbon and particulate matter emission factors were also given for four-stroke 12 HP and 18 HP utility engines.

An assumption was made that 100% of hydrocarbon emissions are VOC. CARB particulate matter and VOC speciation profiles were used to improve the specific engine emission factors for ethylbenzene, chromium, cobalt, copper, manganese, and nickel.

Two-Stroke Emission Factors

generic-	5hp	0.8hp	6.4 HPave use	65hp	Wis. SIP

Compound			

Arsenic			

Benz(a)anthracene	1.68E-05	1.68E-05	1.68E-05	1.68E-05	1.68E-05	4.57E-07

Benzo(a)pyrene	1.34E-05	1.34E-05	1.34E-05	1.34E-05	1.34E-05	3.64E-07

Cd			

Cr	3.00E-05	3.55E-03	2.25E-03	3.07E-03	3.19E-03	4.98E-05

Chrysene	2.74E-05	2.74E-05	2.74E-05	2.74E-05	2.74E-05	7.44E-07

Со	3.00E-05	3.55E-03	2.25E-03	3.07E-03	3.19E-03	4.98E-05

Cu	3.00E-05	3.55E-03	2.25E-03	3.07E-03	3.19E-03	4.98E-05

1,2 Dichloroethane	1.24E-01	1.12E-01	5.90E-02	8.18E-02	1.28E-03

Ethylbenzene	4.74E-02	1.38E+00	1.24E+00	6.60E-01	9.10E-01	1.42E-02

Fluoranthene	1.41E-04	1.41E-04	1.41E-04	1.41E-04	1.41E-04	3.84E-06

Pb			

Mn and compounds	3.00E-05	3.55E-03	2.25E-03	3.07E-03	3.19E-03	4.98E-05

Hg			

Naphthalene	4.08E-03	9.30E-01	8.40E-01	4.40E-01	6.15E-01	9.60E-03

Ni and compounds	3.00E-05	3.55E-03	2.25E-03	3.07E-03	3.19E-03	4.98E-05

PAHs	3.89E-04	3.98E-04	3.98E-04	3.98E-04	3.98E-04	1.08E-05

particulate matter	0.06	7.1	4.5	6.13	6.38	0.1

hydrocarbons	6.68	186	168	88.6	123	1.92

Emissions for two-stroke engines use the "generic car-like" four-stroke emissions as a base when no better emission factors could be determined.

SAE paper No. 910560 (White, Carroll and Hare) presents hydrocarbon and particulate matter emission factors for a 5 HP walk behind mower and a 0.8 HP string trimmer.

SAE paper No. 740735 (Hare, Springer and Huls) presents hydrocarbon and particulate matter emission factors for a variety of snowmobiles. The 32 HP Arctic Cat 440 (Kawasaki), running at an average of 6.4 HP was selected to represent Wisconsin's snowmobiles.

SAE paper No. 740735 (Hare, Springer and Huls) presents hydrocarbon emission factors for a variety of two-stroke outboard motors. The 65 HP Mercury Marine engine was selected to represent Wisconsin's outboard motors. The average Wisconsin boat motor is 55 HP (WDNR 1991). When emission factors are needed per gallon of gasoline, the hydrocarbon factor derived for the Wisconsin Ozone SIP for hydrocarbons from "small" outboard was used.

For outboard motors, particulate matter emissions were derived assuming the ratio of particulate matter to hydrocarbons was the same as that of the snowmobile. It was assumed that 100% of hydrocarbon emissions are VOC (WDNR 1993).

CARB particulate matter and VOC speciation profiles were used to improve the specific engine emission factors for ethylbenzene, chromium, cobalt, copper, manganese, and nickel.

It was assumed that ethylbenzene emissions are entirely from uncombusted fuel. Emissions of naphthalene and 1,2 dichloroethane are from, or derived from, gasoline evaporation data (U.S. EPA 1991). For outboard motors, ethylbenzene, 1,2 dichloroethane, and naphthalene emissions are reduced 25% to account for water cooling emissions that mix in to lake water and do not volatilize.

GLEI Protocol Section 4.4-Activity and Emission Units

An extensive database of 1990 diesel, four-stroke, and two-stroke small engine use (not including snowmobiles or recreational marine) in Milwaukee, Racine, Kenosha, and Washington, Ozaukee, and Waukesha counties was kindly made available (Lein). Equipment population, hours of use per year, power, and load factors were provided.

This information was disaggregated to the county level based on population fraction. No attempt was made to include population growth from 1990 to 1993, as this factor is below the expected accuracy of the data.

Recreational marine use was determined by an extensive survey of Wisconsin boating habits (WDNR 1991). The sample size was 53,559. Responses regarding fuel purchased per year and time-on-the-water was provided at the county level. Emissions were calculated using both pieces of information; emissions from reported use were about twice the emissions from reported fuel purchased. The emission technique based on reported fuel purchased was used, because it is conservative, and seems less prone to reporting errors.

Snowmobile use is based on total snowmobiles registered in the state, including out-of-state owners (WDNR 1995). Use is disaggregated to the county level based on total county, state,

and federal supported snowmobile trail miles per county. The average snowmobile is assumed to operate 60 hours per year (SAE No. 740735). This is in close agreement with industry estimates of an average of 63 gallons of gasoline consumed per snowmobile per year (Klim).

For both two- and four-stroke engine inventories, emission factors from the most similarly sized engine of the same type were used.

GLEI Protocol Section 4.5-Scale-up for Missing Sources

No scale-up for missing sources is considered necessary.

Sample Calculations

The calculations appear simple, because many details were handled when compiling the emission factors.

Weight of pollutant $j = Activity_i * Ef_i$

Results

Emissions from Off-road Diesel Engines

Compound	Kenosha	Milwaukee	Racine	TOTAL
,				

(pounds)	(pounds)	(pounds)	(pounds)

Arsenic	0.59	4.40	0.80	5.79

0.20	1.51	0.28	1.99
	0.20	0.20 1.51	0.20 1.51 0.28

Benzo(a)pyrene	0.02	0.17	0.03	0.22

Cadmium	2.49	18.66	3.40	24.55

Chromium	5.64	42.22	7.70	55.56

Chrysene	0.04	0.32	0.06	0.42
i				

Cobalt	1.09	8.17	1.49	10.76

Copper	156	1,168	213	1,537

1,2 Dichloroethane			

Ethylbenzene	2,312	17,300	3,157	22,768

Fluoranthene	0.9	6.8	1.2	9.00

Lead	7.0	52.1	9.5	68.56

Manganese	0.9	6.4	1.2	8.43

Mercury	0.9	7.0	1.3	9.16

2 13.9	100.25

Ni and compounds	144	1,078	197	1,419

PAHs	20.16	150.90	27.53	198.60

РМ	37,207	278,448	50,807	366,462

VOC	3,852,728	28,832,868	5,260,986	37,946,583

Emissions from Two-stroke Engines, Not Including Recreational Marine or Snowmobile

				
Compound	Kenosha	Milwaukee	Racine	TOTAL
Compound				
	(pounds)	(pounds)	(pounds)	(pounds)
	(pourido)	(pourido)	(pourido)	(podrido)
		2	24	
		3	∠ →	

Benz(a)anthracene	0.09	0.66	0.12	0.87

Benzo(a)pyrene	0.07	0.53	0.10	0.69

Cadmium		

Chromium	16.24	121.54	22.18	159.96

Chrysene	0.14	1.07	0.20	1.41

Cobalt	16.24	121.54	22.18	159.96

Copper	16.24	121.54	22.18	159.96

1,2 dichloroethane	354	2,648	483	3485

Ethylbenzene	3,952	29,577	5,397	38,926

Fluoranthene	0.74	5.53	1.01	7.27

Lead		

Mn and compounds	16.24	121.54	22.18	159.96

Mercury		

Naphthalene	2,642	19,774	3,608	26,025

Ni and compounds	16.24	121.54	22.18	159.96

PAHs	2.08	15.60	2.85	20.53

particulate matter	32,482	243,090	44,355	319,928

hydrocarbons	531,177	3,975,201	725,335	5,231,713

Emissions from Four-stroke Engines, Not Including Recreational Marine or Snowmobile

Compo	ound	Kenosha	Milwaukee	Racine	TOTAL
•		. '	•	•	. "

(pounds)	(pounds)	(pounds)	(POUNDS)

Benz(a)anthracene	0.25	1.90	0.35	2.50
il				

Benzo(a)pyrene	0.20	1.51	0.28	1.99
II	1			

Cadmium			

Cr	1.29	9.63	1.76	12.68

Chrysene	0.41	3.09	0.56	4.07

1.29	9.63	1.76	12.68
	1.29	1.29 9.63	1.29 9.63 1.76

Cu	1.29	9.63	1.76	12.68

1,2 dichloroethane		

Ethylbenzene	988	7,394	1,349	9,731

Fluoranthene	2.13	15.93	2.91	20.96

Lead		

Mn and compounds	1.29	9.63	1.76	12.68

Mercury			
			ĺ

Naphthalene	62.58	460.83	84.08	606.49

1.29	9.63	1.76	12.68
	1.29	1.29 9.63	1.29 9.63 1.76

PAHs	6.01	44.95	8.20	59.16

particulate matter	2,575	19,270	3,516	25,361

hydrocarbons	134,723	1,008,236	183,968	1,326,927

Emissions from Two-stroke Recreational Marine

Compound	Kenosha	Milwaukee	Racine	TOTAL
Compound	Renosna	Willwaukoo	Naomo	1017.2
	(pounds)	(pounds)	(pounds)	(pounds)
		36	3	

Benz(a)anthracene	0.11	0.03	0.08	0.23
íl –				

Benzo(a)pyrene	0.09	0.03	0.07	0.18

Cadmium			

Chromium	12.11	3.80	9.16	25.07

Chrysene	0.18	0.06	0.14	0.37

Cobalt	12.11	3.80	9.16	25.07

Copper	12.11	3.80	9.16	25.07

1,2 Dichloroethane	311	97	235	643

Ethylbenzene	3,458	1,084	2,615	7,157

Fluoranthene	0.93	0.29	0.71	1.93

Lead			

Mn and compounds	12.11	3.80	9.16	25.07

Mercury		

Naphthalene	2336.48	732.57	1766.56	4,836

3.80	9.16	25.07

2.63	0.82	1.99	5.44
	2.63	2.63 0.82	2.63 0.82 1.99

particulate matter	24,229	7,597	18,319	50,145

hydrocarbons	467,297	146,514	353,311	967,122

Emissions from Four-stroke Recreational Marine

Compound	Kenosha	Milwaukee	Racine	TOTAL

(pounds)	(pounds)	(pounds)	(pounds)

Benz(a)anthracene	0.15	0.23	0.18	0.56
II	i			

Benzo(a)pyrene	0.12	0.18	0.14	0.44

Cadmium			

Chromium	0.27	0.40	0.32	1.00

Chrysene	0.25	0.37	0.29	0.91

Cobalt	0.27	0.40	0.32	1.00

Copper	0.27	0.40	0.32	1.00

1,2 Dichloroethane			

Ethylbenzene	428	637	511	1,575

1.28	1.90	1.52	4.70
	1.28	1.28	1.28 1.90 1.52

Lead			

Mn and compounds	0.27	0.40	0.32	1.00

Mercury			
			i
			i
			i
			i
			i
			i

Naphthalene	36.77	54.75	43.90	135.42

Ni and compounds	0.27	0.40	0.32	1.00

PAHs	3.59	5.34	4.28	13.21

hydrocarbons	60,244	89,696	71,921	221,861

Snowmobile Emissions

Compound	Kenosha	Milwaukee	Racine	TOTAL

	(pounds)	(pounds)	(pounds)	(pounds)

Benz(a)anthracene	0.01	0.002	0.02	0.04

Benzo(a)pyrene	0.01	0.002	0.02	0.03

Cadmium		

2.3	0.3	4.0	6.66
	2.3	2.3 0.3	

Chrysene	0.02	0.003	0.04	0.06

Cobalt	2.3	0.3	4.0	6.66

Copper	2.3	0.3	4.0	6.66

1,2 Dichloroethane	44.9	6.7	76.6	128.14

Ethylbenzene	502.0	75.0	856.4	1,433

Fluoranthene	0.1	0.02	0.2	0.31

Lead			

Mn and compounds	2.3	0.3	4.0	6.66

Mercury			1

Naphthalene	334.7	50.0	570.9	955.61

Ni and compounds	2.3	0.3	4.0	6.66

PAHs	0.3	0.05	0.5	0.88

particulate matter	4,663	697	7,954	13,313

hydrocarbons	67,393	10,073	114,960	192,425

Total Emissions from All Non-road Engines

Compound	Kenosha	Milwaukee	Racine	TOTAL	
	[

(pounds)	(pounds)	(pounds)	(pounds)

Arsenic	0.6	4.4	0.8	5.8

Benz(a)anthracene	0.8	4.3	1.0	6.2

Benzo(a)pyrene	0.5	2.4	0.6	3.6

Cd	2.5	18.7	3.4	25

Cr	37.9	177.9	45.1	261

Chrysene	1.0	4.9	1.3	7.3

Со	33.3	143.9	38.9	216

Cu	188.3	1,303.4	250.5	1,742

1,2 dichlorethane	709.6	2,752.1	794.8	4,256

Ethylbenzene	11,639.5	56,066.6	13,884.0	81,590

Fluoranthene	6.1	30.5	7.6	44

Pb	7.0	52.1	9.5	69

Mn	33.1	142.1	38.6	214

Hg	0.9	7.0	1.3	9.2

Naphthalene	5,422.0	21,148.7	6,087.5	32,658

Ni and compounds	176.3	1,213.6	234.1	1,624

PAHs	34.8	217.7	45.4	298

PM	101,697.2	549,907.1	125,597.2	777,202

HC	5,113,563.0	34,062,588.6	6,710,480.3	45,886,632

References

(Lein). Unpublished Data. Wisconsin Department of Natural Resources, Bureau of Air Management. Vicki Lein, 1995.

(WDNR) Development of Model Non-road Engine Replacement Programs for Lawn and Garden Equipment and Recreational Marine Engines - U.S. Environmental Protection Agency Section 105 State Air Grant Funds, Market Based Incentives Program. Wisconsin DNR, Bureau of Air Management. September, 1994.

(WDNR). Documentation Report for 1990 Base Year State Implementation Plan-Emission Inventory for Precursors of Ozone. State of Wisconsin, Department of Natural Resources, Division of Environmental Quality, Bureau of Air Management. July, 1993.

(CARB). *Identification of Volatile Organic Compound Species Profiles- ARB Speciation Manual*, 2nd Edition. State of California Air Resources Board. August, 1991.

(CARB). *Identification of Particulate Matter Species Profiles- ARB Speciation Manual*, 2nd Edition. State of California Air Resources Board. August, 1991.

- (SAE) *Snowmobile Engine Emissions and Their Impact*. Hare CT, Springer KJ, Huls TA. Society of Automotive Engineers, Paper Number 740735. 1974.
- (SAE) Exhaust Emissions from 2-Stroke Outboard Motors and Their Impact. Hare CT, Springer KJ, Huls TA. Society of Automotive Engineers, Paper Number 740737. 1974.
- (SAE) *Duty Cycle for Recreational Marine Engines*. Morgan EJ, Lincoln RH. Society of Automotive Engineers, Paper Number 901596. 1990.
- (SAE) Measurement and Analysis of Gaseous Exhaust Emissions from Recreational and Small Commercial Marine Craft. Coates SW, Lassanske GG. Society of Automotive Engineers, Paper Number 901597. 1991.
- (SAE) Emission Factors for Small Utility Engines. White JJ, Carroll JN, Hare CT, Lourenco JG. Society of Automotive Engineers, Paper Number 910560. 1991.
- (SAE) *Unregulated Motor Vehicle Exhaust Gas Components*. Schuermann D, Lies KH, Klingenberg H. Society of Automotive Engineers, Paper Number 902116. 1990.
- (SAE) *The Composition of Gasoline Hydrocarbon Emissions*, an Evaluation of Catalyst and Fuel Effects." Pelz N, Dempster NM, Hundleby GE, Shore PR. Society of Automotive Engineers, Paper Number 902074. 1990
- (SAE) An Investigation into the Production of Hydrocarbon emissions from a Gasoline Engine Tested on Chemically Defined Fuels. Dempster NM, Shore PR. Society of Automotive Engineers, Paper Number 900354. 1990.
- (WDNR) 1989-1990 Wisconsin Recreational Boating Study, including the survey response data database for fuel consumption data. Wisconsin Department of Natural Resources, Bureau of Research. March 1991.
- (WDNR) Boater Attitudes and Experiences- Results of the 1989-1990 Wisconsin Recreational Boating Study, Phase 2. Technical Bulletin No. 180, Department of Natural Resources, Madison Wisconsin. 1992.
- (WDNR) Reactivity of Exhaust Emissions from a small two-stroke engine and a small fourstroke engine operating on Gasoline and LPG. Hare CT, Carroll JN. SAE paper No. 931540. 1993.
- (SwRI) Speciation of Organic Emissions to Study Fuel Dependence of Small Engine Exhaust Photochemical Reactivity- Final Report. Hare CT, Carroll JN, Latusek JP, Burrahm RW. Southwest Research Institute paper No. 9702. July, 1993.
- (SAE) Measurements of Toxic Exhaust Emissions from Gasoline Powered Light Duty Vehicles. Warner-Selph MA, DeVita J. SAE paper No. 892075. 1989.
- (U.S. EPA) *Technical Guidance- Stage II Vapor Recovery Systems for Control of Vehicle Refueling Emissions at Gasoline Dispensing Facilities.* U.S. EPA EPA-450/3-91-022a. November 1991.

(RADIAN) Compilation of Air Emission Factors for Petroleum Distribution and Retail Marketing Facilities- Second Draft. Prepared for the American Petroleum Institute. Radian Corporation. February 1995.

(Mele) Polluting for Pleasure. Mele, Andre. WW Norton & Company. New York. 1993

(U.S. EPA) Non-road Engine and Vehicle Emission Study-Report. U.S. EPA. PB92-126960. November 1991.

(U.S. EPA) *Motor Vehicle-Related Air Toxics Study*. U.S. EPA. EPA 420-R-93-005. April 1993.

Ed Klim, International Snowmobile Manufacturing Association, East Lansing, Michigan. Personal Communication, 6/21/95.

(Lein) Small, Non-road, Two-Stroke, Spark-Ignition Engines. Lein, Vicki J. Unpublished Manuscript. 1994

(WDNR) Memorandum from Larry Freidig CA/8 Wisconsin DNR Aug. 3 1994 to Dan Drager. Subject: Allotments for Snowmobile, All-terrain Vehicle and Motorcycle Trails o State Property. FILE REF:8700

(WDNR) Database N720-12A - Snowmobile Count by County. From Larry Freidig, Bureau of Community Assistance, Wisconsin DNR. 6/15/95.

(WDOD) Snowmobile Trail Map - Wisconsin Wisconsin Department of Development, Division of Tourism. June, 1993.

Evaluation of Protocol and Recommendations

The protocol is satisfactory for the calculation of emissions from non-road engines. The difficulty is a lack of accepted emission factors and accepted average duty cycles for these engines.

The best conservative calculations used in developing Wisconsin's portion of the regional inventory indicate that emissions from this source are worth consideration. More investigation and research about emissions from small engines (and internal combustion engines in general), as well as the typical conditions under which these engines operate, is indicated.

RESULTS

The complete results for Wisconsin are summarized in Tables C-1, C-2 and C-3 beginning on page 270. The tables list emissions sorted by SIC and pollutant (in pounds) for Kenosha, Milwaukee, and Racine counties, respectively. Table C-4 lists the total emissions of each pollutant by county and for the three-county area.

IMPLICATIONS FOR THE PROTOCOL

Small Point Sources

Toxic emission estimates are made by sources, then reported to the Wisconsin Department of Natural Resources (WDNR). Sources are required to report actual, annual emissions in lb/yr, and identify the method used to make the estimate. The WDNR does not make its own estimates of toxic emissions for point sources, except in a quality control capacity.

Issues

- 1) Different states have different reporting requirements; Wisconsin has access to more data due to stricter legislation. The data generated as a result of the stricter reporting requirement is invaluable in understanding the affect that smaller sources have on Wisconsin's environmental loading.
- 2) While the data from small point sources is valuable, there is still a question about pollutants generated from these sources below the reporting limit. In aggregate, small emissions from all small point sources could be significant.

Landfills

Comprehensive information on landfill sites that have closed up to 60 years ago does not exist, yet they emit gas, as well as contributing to water leaching. It is impossible to know what is in old sites, and very difficult to determine what is going in to present day landfills.

Using emission factors (AP-42) for methane combustion is unsatisfactory for <u>total</u> landfill emissions. A major source of air toxics from landfill sites may be from the volatilization of solvent and petroleum wastes. Metals may be airborne in dust generated by wind and earth moving equipment. Emissions are highly dependent on the content of the waste, which is largely unknown.

Residential Woodburning

In order to compile the most extensive estimate of emissions due to residential woodburning in Wisconsin, the state's methods deviated from the protocol in that all AMS codes were applied, in order of relevance, when calculating emissions.

Issues

1) Wisconsin used SCC 10300903, Industrial Wood Fired Boilers, to provide emission factors when no better emission factor existed. Residential wood stove emission factors were applied to fireplace combustion processes when no better emission factor existed. This technique was not described in the protocol, but is widely used in the WDNR.

Wisconsin officials felt that including this composite of process-related emission factors results in the most complete estimates of emissions from residential wood use possible. They recommend that other states follow this procedure of including emission factors derived for related processes for residential woodburning, and possibly in other cases, if the situation warrants.

Wisconsin has extensive wood combustion survey data available. Data quantifying residential wood fuel use may be limited or difficult to locate in other states. In Wisconsin, residential woodburning is a contributor to local air pollution. Wisconsin officials recommend that other states investigate the opportunity to obtain data for residential woodburning and to include this source in their toxic emission inventory.

Dry Cleaning Operations

No generic emission factors were available in FIRE to calculate PERC emissions based on PERC consumption data. Emission estimates were produced based on emission factors derived from EPA information on the type of machine, control type and amount of PERC consumption.

Gasoline Service Stations

Issues

1) Wisconsin has developed a database of gas stations in ozone non-attainment counties, based on a State notification requirement. The data included name of station, location, facility contacts, and average monthly sales of unleaded gasoline for a 24-month period covering 1991 and 1992. This information was invaluable in understanding the role of gasoline service stations on environmental loading.

Note: Wisconsin did not include tank breathing losses in this pilot. It was expected that these losses will be worthy of consideration, and this source of emissions will be included in the next phase of the project.

Non-road Engines

The protocol is--technically--satisfactory for the calculation of emissions from non-road engines.

Great difficulty lies in a lack of accepted emission factors and accepted average duty cycles for these engines. Wisconsin's best conservative calculations indicate that emissions from this source are well worth consideration.

Issues

1) Emission factors for most of the 49 pollutants were not available through U.S. EPA.

Scientific papers, CARB Particulate Speciation Profiles and VOC Speciation Profiles were used when emission factors were not available. For two-stroke engines, information from U.S. EPA Stage II vehicle refueling was used to determine naphthalene and 1,2 dichloroethane.

- 2) Determining the population of engines, and amount of use, is challenging. Often, an engine will operate in a different location than where the engine is registered. Voluntary questionnaires of recreational use are prone to wide errors, compared to different measures of use.
- 3) One surprising result was that a two-stroke engines (such as on a walk-behind lawn mower, outboard motor or snowmobile) are very "dirty." Such engines exhaust 25 -35% of the gasoline used as uncombusted fuel.

Table C-1: Kenosha County WI, Emissions by SIC

SIC Code TOTAL

	Common and (DOLINDS)	2024	1011	4050	1 4050		7044	0004	0000	(nounda)
	Compound (POUNDS)	3931	4911	4952	4953	5541	7211	8221	9999	(pounds)
	Arsenic		112						1.83	114
2	Atrazine				1				4.4.	
	Benz(a)anthracene				1.55E-05				14.78	15
	Benzo(a)pyrene				2.83E-05				84.37	84
	Cadmium								2.78	3
	Carbon tetrachloride				1.80E-01					1.8E-01
	Chlordane									
	Chromium								37.90	38
	Chrome VI								0.64	0.64
10	Chrysene				7.35E-03				140.79	141
11	Cobalt		55						35.12	90
12	Coke oven emiss.									
13	Copper								193.05	193
	1,2 Dichloroethane					99.5			709.60	809
15	Diethylhexyl phthalate									
	Di-n-butyl phthalate									
	Di-n-octyl phthalate									
	Dioxins; 2378 Equiv									
	Ethylbenzene					751.5			11,640	12,391
	Fluoranthene				1.80E-01	701.0			117.93	118
	Heptachlor				1.002 01				117.50	110
	Hexachlorobenzene									
	Hexachlorobutadiene									
	Hexachloroethane									
	Lead								22.38	22
									22.30	
	Alkylated Pb compounds								25.00	25
	Manganese & compounds								35.06	35
	Mercury								0.99	1
	Methoxychlor			700.0	50.0					
	Methylene Chloride			723.6	53.2				- 40-	777
	Naphthalene				2.48	3757			7,435	11,192
	Nickel & compounds		211						176.58	388
	Parathion									
	Pentachloronitrobenzene									
	Pentachlorophenol									
	phenol								111.83	112
	PCBs				1.51E-02					1.51E-02
	PCDDs								0.04	0.04
	PCDFs								0.22	0.22
	PAHs								7,024	7,024
	POM							0.0551		22
42	TCDD 2378	1			3.52E-05				2.1E-	2.50E-04
									04	
43	TCDF 2378				4.37E-04				6.2E-	0.01
									03	
44	Tetrachloroethylene (PERC)	i	1		8.63E-01		20,833			20,833
		6,680			0.312		-,			6,680
	111 trichloroethane	15,919			2.53					15,921
	245 trichlorophenol	. 5,5 10								. 5,521
	246 trichlorophenol	1	1	1	1					
	Trifluralin									
_ +5										

Table C-2: Milwaukee County WI, Emissions by SIC

	Compound (POUNDS)	2099	2434	2541	2671	2752	2816	2851	2869	2891
	Arsenic	7.6E-06								
	Atrazine									
	Benz(a)anthracene									
	Benzo(a)pyrene									
	Cadmium	1.92E-05								
	Carbon tetrachloride	1.022 00								
	Chlordane									
	Chromium									
	Chrome VI						21.45	1.0		
	Chrysene						21.40	1.0		
	Cobalt									
	Coke oven emiss.									
		5.10E-04								
10	Copper 1,2 Dichloroethane	3.10E-04								
	Diethylhexyl phthalate									
	Di-n-butyl phthalate					ļ				
17	Di-n-octyl phthalate									
	Dioxins; 2378 Equiv			4.0	40.4	4 0 40		0.040		
	Ethylbenzene			1.0	43.1	1,342		6,212		
	Fluoranthene									
	Heptachlor									
	Hexachlorobenzene									
	Hexachlorobutadiene									
	Hexachloroethane									
	Lead									
	Alkylated Pb compounds									
	Manganese & compounds	7E-07								
28	Mercury									
29	Methoxychlor									
	Methylene Chloride					83.0			13,537	6,490
	Naphthalene									
	Nickel & compounds	3.09E-04								
33	Parathion									
34	Pentachloronitrobenzene									
35	Pentachlorophenol									
	phenol									
	PCBs					1				
	PCDDs									
	PCDFs									
	PAHs									
	POM					<u> </u>				
	TCDD 2378									
	TCDF 2378									
	Tetrachloroethylene (PERC)									
	Trichlorethene									1,151
	111 trichloroethane		15,984	356		-		76		7,015
	245 trichlorophenol		.0,004	300		 		, 0		7,010
	246 trichlorophenol					-				
	Trifluralin									
49	rimuraliii									

Table C-2: Milwaukee County WI, Emissions by SIC

	0 1 (0011)100)	0054	0000	0004	0005	SIC CC		0444	0.4.40	0.4.40
	Compound (POUNDS)	2951	3089		3325	3351	3412	3441	3442	3449
	Arsenic			66.43						
	Atrazine									
	Benz(a)anthracene									
4	Benzo(a)pyrene				0.16					
5	Cadmium									
6	Carbon tetrachloride		0.5							
7	Chlordane									
	Chromium									
	Chrome VI									
	Chrysene									
	Cobalt					1.09				
	Coke oven emiss.					1.00				
	Copper Copper				1.5E-03	1 264				
	1,2 Dichloroethane				1.3L-03	1,204				
	Diethylhexyl phthalate									
	Di-n-butyl phthalate									
17	Di-n-octyl phthalate									-
	Dioxins; 2378 Equiv							00		
	Ethylbenzene							60		
	Fluoranthene									
	Heptachlor									
	Hexachlorobenzene									
	Hexachlorobutadiene									
	Hexachloroethane									
25	Lead									
26	Alkylated Pb compounds									
	Manganese & compounds				93.84					
	Mercury									
	Methoxychlor									
	Methylene Chloride						8,867		10,500	
	Naphthalene						-,		,	
	Nickel & compounds		25.6	400	503.61					
	Parathion		20.0		000.01					
	Pentachloronitrobenzene									
	Pentachlorophenol									
	phenol									
	PCBs									
	PCDDs PCDFs									
	PAHs	05.0								
	POM TODD 0070	65.9								
	TCDD 2378									
	TCDF 2378									
	Tetrachloroethylene (PERC)									
	Trichlorethene									6,424
	111 trichloroethane									
	245 trichlorophenol									
	246 trichlorophenol									
	Trifluralin .									

Table C-2: Milwaukee County WI, Emissions by SIC

	Commound (DOLINDS)	2462	2474	2470	1 2 4 0 0 1		2522	2544	2505	2507
	Compound (POUNDS)	3462	3471	3479	3499	3519	3532	3541	3565	3567
	Arsenic	0.9								
	Atrazine									
	Benz(a)anthracene									
	Benzo(a)pyrene									
	Cadmium	0.74	3.73			21				
	Carbon tetrachloride									
	Chlordane									
	Chromium									
	Chrome VI		18.2	293.3	1.22	144				
	Chrysene									
	Cobalt									
12	Coke oven emiss.									
13	Copper	13.1		0.14						
14	1,2 Dichloroethane									
15	Diethylhexyl phthalate									
	Di-n-butyl phthalate									
	Di-n-octyl phthalate									
	Dioxins; 2378 Equiv									
	Ethylbenzene				752.03	7,836				
	Fluoranthene				. 02.00	.,000				
	Heptachlor									
	Hexachlorobenzene									
	Hexachlorobutadiene									
	Hexachloroethane									
	Lead			0.00	133.38					
	Alkylated Pb compounds			0.03	133.30					
		1.2		0.24	9.28		2,259			
	Manganese & compounds	1.2		0.24	9.20		2,239			
20	Mercury									
29	Methoxychlor			40.040		40.000	40.047		4.074	
	Methylene Chloride			18,240		13,086	10,247		1,671	4.050
	Naphthalene	50.5		156.61	11,688	407.07	222			1,853
	Nickel & compounds	59.5				197.37	202			
	Parathion									
	Pentachloronitrobenzene				 					
	Pentachlorophenol									
	phenol									
37	PCBs									
	PCDDs									
	PCDFs									
	PAHs									
	POM									
42	TCDD 2378									
43	TCDF 2378									
	Tetrachloroethylene (PERC)									
	Trichlorethene		7,560							
	111 trichloroethane	9,900	, =		22,352			18,878	11,336	
	245 trichlorophenol	2,300			,			,	,	
	246 trichlorophenol									
	Trifluralin									
+5	Timarami									

Table C-2: Milwaukee County WI, Emissions by SIC

	0 (0010100)	0=0=	000=	0004	0004		Code	1000	1010	- 1011
	Compound (POUNDS)	3585	3625	3661	3694	3822	3844	4226	4613	4911
	Arsenic									218
	Atrazine									
	Benz(a)anthracene									
	Benzo(a)pyrene									
	Cadmium									
	Carbon tetrachloride									
	Chlordane									
	Chromium									
	Chrome VI		36							
10	Chrysene									
	Cobalt									71
12	Coke oven emiss.									
13	Copper									
14	1,2 Dichloroethane									
	Diethylhexyl phthalate									
	Di-n-butyl phthalate									
	Di-n-octyl phthalate									
	Dioxins; 2378 Equiv									
	Ethylbenzene							64.49	6.7	
	Fluoranthene									
	Heptachlor									
	Hexachlorobenzene									
	Hexachlorobutadiene									
	Hexachloroethane									
	Lead									
	Alkylated Pb compounds									
	Manganese & compounds									
	Mercury									
	Methoxychlor									
	Methylene Chloride		13,291			105.86	1,789			
	Naphthalene		10,201	874		100.00	1,700	12.67	0.2	
	Nickel & compounds			014				12.01	0.2	410
	Parathion									710
	Pentachloronitrobenzene									
	Pentachlorophenol									
	phenol									
	PCBs									
	PCDDs									
	PCDFs									
	PAHs									
	POM									
	TCDD 2378									
	TCDF 2378									
	Tetrachloroethylene (PERC)		10 200							
	Trichlorethene	0.045	10,300		00.407		40.500			
	111 trichloroethane	2,645			20,467		18,508			
	245 trichlorophenol									
	246 trichlorophenol									
49	Trifluralin									

Table C-2: Milwaukee County WI, Emissions by SIC

					SIC C	ode					TOTAL
	(POUNDS)	4952	4953	4961	5093		5541	7211	8221	9999	(pounds)
1	Arsenic			104						7.62	397
	Atrazine										
	Benz(a)anthracene		1.16E-04							40.88	41
	Benzo(a)pyrene		2.12E-04							221.89	222
	Cadmium	22.25		17						19.07	84
	Carbon tetrachloride		1.30								1.8
	Chlordane										
	Chromium									177.90	178
	Chrome VI									1.68	517
	Chrysene		1.00E-01							390.71	391
	Cobalt		1.002 01		19.36					148.66	240
	Coke oven emiss.				10.00					140.00	240
	Copper Copper	244.51								1,316	2,838
	1,2 Dichloroethane	244.01					515.5			2,752	3,268
	Diethylhexyl phthal						313.3			2,752	3,200
	Di-n-butyl phthalate										
	Di-n-octyl phthalate										
	Dioxins; 2378 Equiv					207.05	0.005			50.007	70.000
	Ethylbenzene		4.00			387.65	3,895			56,067	76,666
	Fluoranthene		1.30							323.15	323
	Heptachlor										
	Hexachlorobenzene										
	Hexachlorobutadien										
	Hexachloroethane										
	Lead									92.34	226
	Alkylated Pb com										
	Manganese &com									147.22	2,511
	Mercury	118.20		25						7.24	150
	Methoxychlor										
	Methylene Chloride		398.3								98,304
	Naphthalene		18.6			0.04	19,474			26,417	60,492
32	Nickel &	282.04		552	225.8					1,214	4,072
	compounds										
33	Parathion										
34	Pentachloronitro										
35	Pentachlorophenol										
	phenol .					7.0				292.65	300
	PCBs		1.00E-01								0.1
	PCDDs									0.11	0.11
	PCDFs					İ				0.585	0.59
	PAHs					İ				18,508	18,508
	POM								0.32	58.53	124
	TCDD 2378		2.64E-04			1				7.90E-04	1.05E-03
	TCDF 2378		3.27E-03			t	†			2.00E-02	0.02
	(PERC)		6.50			t	†	204,273			204,280
	Trichlorethene		2.34			1		_ 5 ., 0			25,437
	111 trichloroethane		18.9			1					127,536
	245 trichlorophenol					 					127,000
	246 trichlorophenol					 					
	Trifluralin										
+3	riniuranii										

Table C-3: Racine County WI, Emissions by SIC

Compound (POUNDS)	3069	3325	3398	3499	3523	3639	3714	3931
1 Arsenic								
2 Atrazine								
3 Benz(a)anthracene								
4 Benzo(a)pyrene								
5 Cadmium								
6 Carbon tetrachloride								
7 Chlordane								
8 Chromium								
9 Chrome VI								
10 Chrysene								
11 Cobalt								
12 Coke oven emiss.								
13 Copper		321						
14 1,2 Dichloroethane		021						
15 Diethylhexyl phthalate								
16 Di-n-butyl phthalate								
17 Di-n-octyl phthalate								
18 Dioxins; 2378 Equiv								
19 Ethylbenzene					13,302			
20 Fluoranthene					10,002			
21 Heptachlor								
22 Hexachlorobenzene								
23 Hexachlorobutadiene								
24 Hexachloroethane								
25 Lead								
26 Alkylated Pb compounds								
27 Manganese & compounds								
28 Mercury								
29 Methoxychlor								
30 Methylene Chloride	34,669							
31 Naphthalene	0 1,000	2,905						
32 Nickel & compounds		2,000						
33 Parathion								
34 Pentachloronitrobenzene								
35 Pentachlorophenol								
36 phenol			4,338					
37 PCBs			.,555					
38 PCDDs								
39 PCDFs								
40 PAHs								
41 POM								
42 TCDD 2378								
43 TCDF 2378								
44 Tetrachloroethylene (PERC)	2,848							
45 Trichlorethene	11,338			6,884			14,682	6,680
46 111 trichloroethane	426			5,551		9,699	,002	15,919
47 245 trichlorophenol	5					3,000		. 0,0.0
48 246 trichlorophenol								
49 Trifluralin								
10 ji ililaraliii								

Table C-3: Racine County WI, Emissions by SIC

			S	IC Code			TOTAL
	Compound (POUNDS)	4953	5541	7211	8221	9999	(pounds)
1	Arsenic					2.80	3
2	Atrazine						
3	Benz(a)anthracene	2.1E-05				21.00	21
4	Benzo(a)pyrene	3.9E-05				120.60	120
5	Cadmium					3.80	3
6	Carbon tetrachloride	2.5E-01					2.5E-01
7	Chlordane						
8	Chromium					45.10	45
9	Chrome VI					1	0.92
10	Chrysene	1.0E-02				200.30	201
11	Cobalt					41.90	42
12	Coke oven emiss.						
13	Copper					257.5	578
14	1,2 Dichloroethane		101			794.80	896
	Diethylhexyl phthalate						
	Di-n-butyl phthalate						
	Di-n-octyl phthalate						
	Dioxins; 2378 Equiv						
	Ethylbenzene		765			13,884	27,950
	Fluoranthene	2.5E-01				167.6	167
	Heptachlor						
	Hexachlorobenzene						
	Hexachlorobutadiene						
	Hexachloroethane						
	Lead					31.50	31
26	Alkylated Pb compounds						
	Manganese & compounds					41.60	42
	Mercury					1.43	1.43
	Methoxychlor						
	Methylene Chloride	72.7					34,741
	Naphthalene	3.4	3824			8,959	15,691
	Nickel & compounds					234.5	235
	Parathion						
	Pentachloronitrobenzene						
	Pentachlorophenol						
	phenol					160	4,497
	PCBs	2.1E-02					2.10E-02
	PCDDs					0.06	0.06
	PCDFs					0.32	0.32
	PAHs					10,015	10,015
	POM				0.14		32
	TCDD 2378	4.8E-05				2.8E-04	3.3E-04
	TCDF 2378	6.0E-04				8.8E-03	9.4E-03
	Tetrachloroethylene (PERC)	1.2E-01		35,900			38,748
	Trichlorethene	0.426		-,500			39,584
	111 trichloroethane	3.5					26,047
	245 trichlorophenol						- ,
	246 trichlorophenol						
	Trifluralin						
	×11 *******						

Table C-4: Summary; Kenosha, Milwaukee, and Racine County WI, Totals

		Kenosha	Milwaukee	Racine
	COMPOUND	(pounds)	(pounds)	(pounds)
1	Arsenic	114	397	3
	Atrazine	117	007	
	Benz(a)anthracene	15	41	21
	Benzo(a)pyrene	84	222	120
	Cadmium	3	84	3
	Carbon tetrachloride	0.18	1.8	0.25
	Chlordane	0.10	1.0	0.20
	Chromium	38	178	45
	Chrome VI	0.64	516.86	0.92
	Chrysene	141	391	201
	Cobalt	90	240	42
	Coke oven emiss.	- 55	2.0	
	Copper	193	2,838	578
	1,2 Dichloroethane	809	3,268	896
	Diethylhexyl phthalate	300	5,200	555
	Di-n-butyl phthalate			
	Di-n-octyl phthalate			
18	Dioxins; 2378 Equiv			
	Ethylbenzene	12,391	76,666	27,950
	Fluoranthene	118	323	167
	Heptachlor		010	
	Hexachlorobenzene			
	Hexachlorobutadiene			
	Hexachloroethane			
	Lead	22	226	31
	Alkylated Pb compounds			
	Manganese & compounds	35	2,511	41
	Mercury	0.99	150.44	1.43
	Methoxychlor	5.00		
	Methylene Chloride	777	98,304	34,741
	Naphthalene	11,192	60,492	15,691
	Nickel & compounds	388	4,072	235
	Parathion		, -	
	Pentachloronitrobenzene			
	Pentachlorophenol			
	phenol	112	300	4,498
	PCBs	1.51E-02	0.1	2.10E-023
	PCDDs	0.03	0.05	
	PCDFs	0.15		
	PAHs	7,024	18,508	10,015
	POM	41	172	58
	TCDD 2378	2.10E-04	1.05E-03	3.3E-04
	TCDF 2378	6.19E-03	2.03E-02	9.4E-03
	Tetrachloroethylene (PERC)	20,833	204,280	38,748
	Trichlorethene	6,680	25,437	39,584
	111 trichloroethane	15,921	127,536	26,047
	245 trichlorophenol		•	
	246 trichlorophenol			
	Trifluralin			

Appendix D: Index of SIC Codes

SIC	DESCRIPTION	SIC	DESCRIPTION
01	Agricultural Production-crops	071	Soil Preparation Services
011	Cash Grains	0711	Soil Preparation Services
0111	Wheat	072	Crop Services
0112	Rice	0721	Crop Planting and Protection
0115	Corn	0722	Crop Harvesting
0116	Soybeans	0723	Crop Prep Services for Market
0119	Cash Grains Nec	0724	Cotton Ginning
0130	Field Crops, Except Cash Grains	0729	General Crop Services
0131	Cotton	074	Veterinary Services
0132	Tobacco	0741	Veterinary Serv Farm Livestock
0133	Sugar Crops	0742	Veterinary Serv Specialties
0134	Irish Potatoes	075	Animal Services, Except Veterinary
0139	Field Crops Except Cash Grains	0751	Livestock Serv Exc Specialties
016	Vegetables and Melons	0752	Animal Specialty Services
0161	Vegetables and Melons	076	Farm Labor and Management Services
017	Fruits and Tree Nuts	0761	Farm Labor Contractors
0171	Berry Crops	0762	Farm Management Services
0172	Grapes	078	Landscape and Horticultural Services
0173	Tree Nuts	0781	Landscape Counseling and Planning
0174	Citrus Fruits	0782	Lawn and Garden Services
0175	Deciduous Tree Fruits	0783	Ornamental Shrub and Tree Serv
0179	Fruits and Tree Nuts Nec	08	Forestry
018	Horticultural Specialties	081	Timber Tracts
0181	Ornamental Nursery Products	0811	Timber Tracts
0182	Food Crops Grown under Cover	0821	Forest Nurseries & Seed Gather
0189	Horticultural Specialties Nec	083	Forest Nurseries & Gathering of Forest
019	General Farms, Primarily Crop		Products
0191	General Farms Primarily Crop	0831	Forest Products
02	Agricultural Production-livestock & Animal	0843	Extraction of Pine Gum
	Special	0849	Gathering of Forest Products
021	Livestock, Except Dairy and Poultry	085	Forestry Services
0211	Beef Cattle Feedlots	0851	Forestry Services
0212	Beef Cattle Except Feedlots	09	Fishing, Hunting and Trapping
0213	Hogs	091	Commercial Fishing
0214	Sheep and Goats	0912	Finfish
0219	General Livestock Nec	0913	Shellfish
024	Dairy Farms	0919	Miscellaneous Marine Products
0241	Dairy Farms	092	Fish Hatcheries and Preserves
025	Poultry and Eggs	0921	Fish Hatcheries and Preserves
0251	Broiler, Fryer, and Roaster Chickens	097	Hunting, Trapping, & Game Propagation
0252	Chicken Eggs	0971	Hunting, trapping, & Game Propagation
0253	Turkeys and Turkey Eggs	10	Metal Mining
0254	Poultry Hatcheries	101	Iron Ores
0259	Poultry and Eggs Nec	1011	Iron Ores
027	Animal Specialties	102	Copper Ores
0271	Fur-bearing Animals and Rabbit	1021	Copper Ores
0272	Horses and Other Equines	103	Lead and Zinc Ores
0273	Animal Aquaculture	1031	Lead and Zinc Ores
0279	Animal Specialties Nec	104	Gold and Silver Ores
029	General Farms, Primarily Livestock and	1041	Gold Ores
	Animal Specialties	1044	Silver Ores
0291	Gen Farms Primarily Livestock	1051	Bauxite and Other Aluminum Ore
07	Agricultural Services	106	Ferroalloy Ores, Except Vanadium

SIC	DESCRIPTION	SIC	DESCRIPTION
1061	Ferroalloy Ores Exc Vanadium	152	Gen Building Contractors-residential
108	Metal Mining Services		Buildings
1081	Metal Mining Services	1521	Single-family Housing Construction
109	Miscellaneous Metal Ores	1522	Residential Construction Nec
1092	Mercury Ores	153	Operative Builders
1094	Uranium-radium-vanadium Ores	1531	Operative Builders
1099	Metal Ores Nec	154	Gen Building Contractors-nonresidential
1111	Anthracite	1711	Buildings
1112	Anthracite Mining Services	1541	Industrial Building/warehouses
12	Coal Mining	1542	Nonresidential Construction Nec
1211 1213	Bituminous Coal and Lignite	16	Heavy Construction Other than Bldg Constr-
1213	Bituminous & Lignite Mine Serv Bituminous Coal and Lignite Mining	161	contract Highway & Street Construction, Except
1221	Bituminous Coal & Lignite - Surface	101	Elevated Highway
1221	Bituminous Coal & Lignite - Surface Bituminous Coal & Lignite - Underground	1611	Highway and Street Construction
123	Anthracite Mining	162	Heavy Construction, Except Highway &
1231	Anthracite Mining	102	Street Construction
124	Coal Mining Services	1622	Bridge Tunnel & Elevated Hgwy
1241	Coal Mining Services	1623	Water Sewer and Utility Lines
13	Oil and Gas Extraction	1629	Heavy Construction Nec
131	Crude Petroleum and Natural Gas	17	Construction-special Trade Contractors
1311	Crude Petroleum & Natural Gas	171	Plumbing, Heating, and Air-conditioning
132	Natural Gas Liquids	1711	Plumbing Heating Air Condition
1321	Natural Gas Liquids	172	Ainting and Paper Hanging
138	Oil and Gas Field Services	1721	Painting and Paper Hanging
1381	Drilling Oil and Gas Wells	173	Electrical Work
1382	Oil and Gas Exploration Service	1731	Electrical Work
1389	Oil and Gas Field Services Nec	174	Masonry, Stoneworks, Tile Setting, &
14	Mining and Quarrying of Nonmetallic		Plastering
	Minerals	1741	Masonry and Other Stonework
141	Dimension Stone	1742	Plastering Drywall/insulation
1411	Dimension Stone	1743	Terrazzo Tile Marble Mosaic Work
142	Crushed & Broken Stone, Including Riprap	175	Carpentry and Floor Work
1422	Crushed and Broken Limestone	1751	Carpentry Work
1423	Crushed and Broken Granite	1752	Floor Laying & Floor Work Nec
1429 144	Crushed and Broken Stone Nec Sand and Gravel	176 1761	Roofing, Siding, and Sheet Metal Work Roofing and Sheet Metal Work
1442	Construction Sand and Gravel	1701	Concrete Work
1442	Industrial Sand	1771	Concrete Work
1440	Clay, Ceramic, and Refractory Minerals	1771	Water Well Drilling
1452	Bentonite	1781	Water Well Drilling
1453	Fire Clay	179	Misc Special Trade Contractors
1454	Fullers Earth	1791	Structural Steel Erection
1455	Kaolin and Ball Clay	1793	Glass and Glazing Work
1459	Clay and Related Minerals Nec	1794	Excavating and Foundation Work
147	Chemical & Fertilizer Mineral Mining	1795	Wrecking and Demolition Work
1472	Barite	1796	Installing Building Equipment
1473	Fluorspar	1799	Special Trade Contractors Nec
1474	Potash Soda & Borate Minerals	20	Food and Kindred Products
1475	Phosphate Rock	201	Meat Products
1476	Rock Salt	2011	Meat Packing Plants
1477	Sulfur	2013	Sausages & Other Prepared Meat
1479	Chemical and Fertilizer Mining	2015	Poultry Slaughtering & Processing
148	Nonmetallic Minerals Services, Except Fuels	2016	Poultry Dressing Plants
1481	Nonmetallic Minerals Services	2017	Poultry and Egg Processing
149	Miscellaneous Nonmetallic Minerals, Except	202	Dairy Products
1.400	Fuels	2021	Creamery Butter
1492	Gypsum T. I. C	2022	Cheese Natural and Processed
1496	Talc Soapstone & Pyrophyllite	2023	Condensed and Evaporated Milk
1499 15	Nonmetallic Minerals, Nec	2024 2026	Ice Cream and Frozen Desserts Fluid Milk
15	Building Construction-general Contractors & Bldrs	2026	Preserved Fruits and Vegetables
	Diuis	203	Treserved Fruits and vegetables

SIC	DESCRIPTION	SIC	DESCRIPTION
2032	Canned Specialties	222	Broadwoven Fabric Mills, Manmade Fiber &
2033	Canned Fruits and Vegetables		Silk
2034	Dehydrated Fruits Vegs Soups	2221	Weaving Mills, Synthetics
2035	Pickles Sauces and Salad Dress	223	Broadwoven Fabric Mills, Wool (Including
2037	Frozen Fruits and Vegetables		Dyeing & Finishing)
2038	Frozen Specialties	2231	Weaving & Finishing Mills Wool
204	Grain Mill Products	224	Narrow Fabric & Smallwares Mills: Cotton,
2041	Flour & Other Grain Mill Prod		Wool, Silk, & Manmade Fiber
2042	Grain Mill Products	2241	Narrow Fabric Mills
2043	Cereal Breakfast Foods	225	Knitting Mills
2044	Rice Milling	2251	Women's Hosiery, Except Socks
2045	Blended and Prepared Flour	2252	Hosiery, Nec
2046	Wet Corn Milling	2253	Knit Outerwear Mills
2047	Dog Cat and Other Pet Food	2254	Knit Underwear Mills
2048	Prepared Feeds Nec	2257	Circular Knit Fabric Mills
205	Bakery Products	2258	Warp Knit Fabric Mills
2051	Bread Cake and Related Product	2259	Knitting Mills, Nec
2052	Cookies and Crackers	226	Dyeing & Finishing Textiles, Except Wool
2053 206	Frozen Bakery Products, Except Bread	2261	Fabrics & Knit Goods
2061	Sugar and Confectionery Products Raw Cane Sugar	2262	Finishing Plants, Cotton
2061	Cane Sugar Refining	2269	Finishing Plants, Synthetics Finishing Plants, Nec
2062	Beet Sugar	227	Carpets and Rugs
2063	Candy and Other Confectionery Products	2271	Woven Carpets and Rugs
2065	Confectionery Products	2272	Tufted Carpets and Rugs
2066	Chocolate and Cocoa Products	2273	Carpets and Rugs
2067	Chewing Gum	2279	Carpets and Rugs, Nec
2068	Salted and Roasted Nuts and Seeds	228	Yarn and Thread Mills
207	Fats and Oils	2281	Yarn Mills, Except Wool
2074	Cottonseed Oil Mills	2282	Throwing and Winding Mills
2075	Soybean Oil Mills	2283	Wool Yarn Mills
2076	Vegetable Oil Mills Nec	2284	Thread Mills
2077	Animal and Marine Fats and Oil	229	Miscellaneous Textile Goods
2079	Shortening and Cooking Oils	2291	Felt Goods Exc Woven Felt/hats
208	Beverages	2292	Lace Goods
2082	Malt Beverages	2293	Padding & Upholstery Filling
2083	Malt	2294	Processed Textile Waste
2084	Wines Brandy & Brandy Spirits	2295	Coated Fabrics, Not Rubberized
2085	Distilled Liquor Except Brandy	2296	Tire Cord and Fabric
2086	Bottled and Canned Soft Drinks	2297	Nonwoven Fabrics
2087	Flavoring Extracts and Syrups,nec	2298	Cordage and Twine
209	Misc Food Preparations & Kindred Products	2299	Textile Goods, Nec
2091	Canned and Cured Seafoods	23	Apparel & Other Finished Products Made
2092	Fresh or Frozen Packaged Fish		from Fabric
2095	Roasted Coffee	231	Men's and Boys' Suits, Coats, & Overcoats
2096	Potato Chips and Similar Snacks	2311	Men's and Boys' Suits and Coat
2097	Manufactured Ice	232	Men's & Boys' Furnishings, Work Clothing,
2098	Macaroni and Spaghetti		& Allied Garments
2099	Food Preparations Nec	2321	Men & Boys Shirts/nightwear
21	Tobacco Products	2322	Men's and Boy's Underwear
211	Cigarettes	2323	Men's and Boys' Neckwear
2111	Cigarettes	2325	Men's and Boy's Trousers and Slacks
212	Cigars	2326	Men's and Boy's Work Clothing
2121	Charity and Surphing Tabana and Surff	2327	Men & Boys Separate Trousers
213	Chewing and Smoking Tobacco and Snuff	2328	Men's and Boys' Work Clothing
2131 214	Chewing and Smoking Tobacco Tobacco Stemming and Redrying	2329 233	Men's and Boys' Clothing, Nec
2141	Tobacco Stemming and Redrying Tobacco Stemming and Redrying	2331	Outerwear: Women, Misses, & Juniors Women's & Misses' Blouses & Shirts
2141	Textile Mill Products	2335	Women's and Misses' Dresses
221	Broadwoven Fabric Mills, Cotton	2337	Women's & Misses Suits & Coats
2211	Weaving Mills, Cotton	2339	Women's & Misses Outerwear Nec
2211	Juring mino, Cotton	2337	official & frieddo Outer wedi 1100

234	Undergarments: Women, Misses, Childrens,
22.41	& Infants
2341	Women's & Children's Underwear
2342	Brassieres and Allied Garments
235	Hats, Caps, and Millinery
2351	Millinery
2352	Hats & Caps Exc Millinery
2353	Hats, Caps and Millinery
236	Outerwear: Girls, Children, & Infants
2361	Children's Dresses and Blouses
2363	Children's Coats and Suits
2369	Children's Outerwear, Nec
237	Fur Goods
2371	Fur Goods
238	Miscellaneous Apparel & Accessories
2381	Fabric Dress and Work Gloves
2384	Robes and Dressing Gowns
2385	Waterproof Outergarments
2386	Leather & Sheep Lined Clothing
2387	Apparel Belts
2389	Apparel and Accessories, Nec
239	Misc Fabricated Textile Products
2391	Curtains and Draperies
2392	House Furnishings, Nec
2393	Textile Bags
2394	Canvas and Related Products
2395	Pleating and Stitching
2396	Automotive & Apparel Trimmings
2397	Schiffli Machine Embroideries
2399	Fabricated Textile Products
24	Lumber & Wood Products, Except Furniture
241	Logging
2411	Logging
242	Sawmills and Planing Mills
2421	Sawmills & Planing Mills General
2426	Hardwood Dimension & Flooring
2429	Special Product Sawmills, Nec
243	Millwork, Veneer, Plywood & Structural
	Members
2431	Millwork
2434	Wood Kitchen Cabinets
2435	Hardwood Veneer and Plywood
2436	Softwood Veneer and Plywood
2439	Structural Wood Members, Nec
244	Wood Containers
2441	Nailed Wood Boxes and Shook
2448	Wood Pallets and Skids
2449	Wood Containers, Nec
245	Wood Buildings and Mobile Homes
2451	Mobile Homes
2452	Prefabricated Wood Buildings
249	Miscellaneous Wood Products
2491	Wood Preserving
2491	Particleboard
2493	Reconstituted Wood Products
2499	Wood Products, Nec
25	Furniture and Fixtures
251	Household Furniture
2511	Wood Household Furniture
2512	Upholstered Household Furniture
2514	Metal Household Furniture
2515	Mattresses and Bedsprings

2517	Wood TV and Radio Cabinets	2751	Commercial Printing Letterpress
2519	Household Furniture, Nec	2752	Commercial Printing Lithograph
252	Office Furniture	2753	Engraving and Plate Printing
2521	Wood Office Furniture	2754	Commercial Printing, Gravure
2522	Metal Office Furniture	2759	Commercial Printing, Nec
253	Public Building & Related Furniture	276	Manifold Business Forms
2531	Public Building & Related Furniture	2761	Manifold Business Forms
254	Partitions, Shelving, Lockers, & Office &	277	Greeting Cards
	Store Fixtures	2771	Greeting Card Publishing
2541	Wood Partitions and Fixtures	278	Blankbooks, Looseleaf Binders, &
2542	Metal Partitions and Fixtures	270	Bookbinding & Related Work
259	Miscellaneous Furniture and Fixtures	2782	Blankbooks & Looseleaf Binders
2591		2782	
2599	Drapery Hardware/blinds/shades Furniture and Fixtures, Nec	2789	Bookbinding and Related Work
		2791	Service Industries for the Printing Trade
26	Paper and Allied Products		Typesetting
261	Pulp Mills	2793	Photoengraving
2611	Pulp Mills	2794	Electrotyping and Stereotyping
262	Paper Mills	2795	Lithographic Platemaking Services
2621	Paper Mills Exc Building Paper	2796	Platemaking Services
263	Paperboard Mills	28	Chemicals and Allied Products
2631	Paperboard Mills	281	Industrial Inorganic Chemicals
2641	Paper Coating and Glazing	2812	Alkalies and Chlorine
2642	Envelopes	2813	Industrial Gases
2643	Bags, Except Textile Bags	2816	Inorganic Pigments
2645	Die-cut Paper and Board	2819	Industrial Inorganic Chemicals
2646	Pressed and Molded Pulp Goods	282	Plastics Materials and Synthetics
2647	Sanitary Paper Products	2821	Plastics Materials and Resins
2648	Stationery Products	2822	Synthetic Rubber
2649	Converted Paper Products, Nec	2823	Cellulosic Man-made Fibers
265	Paperboard Containers and Boxes	2824	Organic Fibers, Noncellulosic
2651	Folding Paperboard Boxes	283	Drugs
2652	Set-up Paperboard Boxes	2831	Biological Products
2653	Corrugated and Solid Fiber Box	2833	Medicinals and Botanicals
2654	Sanitary Food Containers	2834	Pharmaceutical Preparations
2655	Fiber Cans Drums like Products	2835	Diagnostic Substances
2656	Sanitary Food Containers	2836	Biological Products, Except Diagnostic
2657		284	Soap, Cleaners, and Toilet Goods
	Folding Paper and Board Mills		
2661	Building Paper and Board Mills	2841 2842	Soap and Other Detergents
267	Converted Paper & Paperboard Products,		Polishes and Sanitation Goods
0.671	Except Containers & Boxes	2843	Surface Active Agents
2671	Paper Coated and Laminated Packaging	2844	Toilet Preparations
2672	Paper Coated and Laminated, Nec	285	Paints, Varnishes, Lacquers, Enamels, &
2673	Bags: Plastics, Laminated and Coated		Allied Products
2674	Bags: Uncoated Paper and Multiwall	2851	Paints and Allied Products
2675	Die-cut Paper and Board	286	Industrial Organic Chemicals
2676	Sanitary Paper Products	2861	Gum and Wood Chemicals
2677	Envelopes	2865	Cyclic Crudes and Intermediate
2678	Stationery Products	2869	Industrial Organic Chemicals,nec
2679	Converted Paper Products, Nec	287	Agricultural Chemicals
27	Printing, Publishing and Allied Industries	2873	Nitrogenous Fertilizers
271	Newspapers: Publishing, or Publishing &	2874	Phosphatic Fertilizers
	Printing	2875	Fertilizers, Mixing Only
2711	Newspapers	2879	Agricultural Chemicals, Nec
272	Periodicals: Publishing, or Publishing &	289	Miscellaneous Chemical Products
	Printing	2891	Adhesives and Sealants
2721	Periodicals	2892	Explosives
273	Books	2893	Printing Ink
2731	Book Publishing	2895	Carbon Black
2732	Book Printing	2899	Chemical Preparations, Nec
274	Miscellaneous Publishing	29	Petroleum Refining and Related Industries
2741	Miscellaneous Publishing	291	Petroleum Refining
275	Commercial Printing	2911	Petroleum Refining
213	Commercial Finning	2711	1 ca oleum Remning

295	Asphalt Paving and Roofing Materials	3253	Ceramic Wall and Floor Tile
2951	Paving Mixtures and Blocks	3255	Clay Refractories
2952	Asphalt Felts and Coatings	3259	Structural Clay Products, Nec
299	Misc Petroleum and Coal Products	326	Pottery and Related Products
2992	Lubricating Oils and Greases	3261	Vitreous Plumbing Fixtures
2999	Petroleum and Coal Products, Nec	3262	Vitreous China Food Utensils
30	Rubber and Miscellaneous Plastics Products	3263	Fine Earthenware Food Utensils
301	Tires and Inner Tubes	3264	Porcelain Electrical Supplies
3011	Tires and Inner Tubes	3269	Pottery Products, Nec
302	Rubber and Plastics Footwear	327	Concrete, Gypsum, and Plaster Products
3021	Rubber and Plastics Footwear	3271	Concrete Block and Brick
3031	Reclaimed Rubber	3272	Concrete Products, Nec
3041	Rubber & Plastics Hose and Belting	3273	Ready-mixed Concrete
305	Gaskets, Packing, Sealing Devices, &	3274	Lime
	Rubber & Plastics Hose & Belting	3275	Gypsum Products
3052	Rubber and Plastics Hose and Belting	328	Cut Stone and Stone Products
3053	Gaskets, Packing and Sealing Devices	3281	Cut Stone and Stone Products
306	Fabricated Rubber Products, Nec	329	Abrasive, Asbestos, & Misc Nonmetallic
3061	Mechanical Rubber Goods		Mineral Products
3069	Fabricated Rubber Products, Nec	3291	Abrasive Products
3079	Miscellaneous Plastics Products	3292	Asbestos Products
308	Miscellaneous Plastics Products, Nec	3293	Gaskets/packing/sealing Device
3081	Unsupported Plastics Film and Sheet	3295	Minerals, Ground or Treated
3082	Unsupported Plastics Profile Shapes	3296	Mineral Wool
3083	Laminated Plastics Plate and Sheet	3297	Nonclay Refractories
3084	Plastics Pipe	3299	Nonmetallic Mineral Products
3085	Plastics Bottles	33	Primary Metal Industries
3086	Plastics Foam Products	331	Steel Works, Blast Furnaces, & Rolling &
3087	Custom Compound Purchased Resins		Finishing Mills
3088	Plastics Plumbing Fixtures	3312	Blast Furnaces and Steel Mills
3089	Plastics Products, Nec	3313	Electrometallurgical Products
31	Leather and Leather Products	3315	Steel Wire and Related Products
311	Leather Tanning and Finishing	3316	Cold Finishing of Steel Shapes
3111	Leather Tanning and Finishing	3317	Steel Pipe and Tubes
313	Boot & Shoe Cut Stock & Findings	332	Iron and Steel Foundries
3131	Boot and Shoe Cut Stock and Findings	3321	Gray Iron Foundries
314	Footwear, Except Rubber	3322	Malleable Iron Foundries
3142	House Slippers	3324	Steel Investment Foundries
3143	Men's Footwear, Except Athletic	3325	Steel Foundries, Nec
3144	Women's Footwear, Except Athletic	333	Primary Smelting & Refining of Nonferrous
3149	Footwear, Except Rubber, Nec		Metals
315	Leather Gloves and Mittens	3331	Primary Copper
3151	Leather Gloves and Mittens	3332	Primary Lead
316	Luggage	3333	Primary Zinc
3161	Luggage	3334	Primary Aluminum
317	Handbags and Personal Leather Goods	3339	Primary Nonferrous Metals, Nec
3171	Women's Handbags and Purses	334	Secondary Smelting & Refining of
3172	Personal Leather Goods, Nec		Nonferrous Metals
319	Leather Goods, Nec	3341	Secondary Nonferrous Metals
3199	Leather Goods, Nec	335	Rolling, Drawing, & Extruding of
32	Stone, Clay, Glass and Concrete Products		Nonferrous Metals
321	Flat Glass	3351	Copper Rolling and Drawing
3211	Flat Glass	3353	Aluminum Sheet Plate & Foil
322	Glass and Glassware, Pressed or Blown	3354	Aluminum Extruded Products
3221	Glass Containers	3355	Aluminum Rolling & Drawing Nec
3229	Pressed and Blown Glass, Nec	3356	Nonferrous Rolling and Drawing
323	Glass Products, Made of Purchased Glass	3357	Nonferrous Wire Drawing/insulating
3231	Products of Purchased Glass	336	Nonferrous Foundries (Castings)
324	Cement, Hydraulic	3361	Aluminum Foundries
3241	Cement, Hydraulic	3362	Brass Bronze & Copper Foundry
325	Structural Clay Products	3363	Aluminum Die-castings
3251	Brick and Structural Clay Tile	3364	Nonferrous Die-castings, Except Aluminum
			5 / · · · · · ·

22.55		2511	m 1:
3365	Aluminum Foundries	3511	Turbines and Turbine Generator
3366	Copper Foundries	3519	Nternal Combustion Engines
3369	Nonferrous Foundries, Nec	352	Farm and Garden Machinery and Equipment
339	Miscellaneous Primary Metal Products	3523	Farm Machinery and Equipment
3398	Metal Heat Treating	3524	Lawn and Garden Equipment
3399	Primary Metal Products, Nec	353	Construction, Mining, and Materials Handling
34	Fabricated Metal Products, Except Machinery		Machinery & Equipment
	& Tran	3531	Construction Machinery
341	Metal Cans and Shipping Containers	3532	Mining Machinery
3411	Metal Cans	3533	Oil Field Machinery
3412	Metal Barrels, Drums & Pails	3534	Elevators and Moving Stairways
342	Cutlery, Handtools, and General Hardware	3535	Conveyors and Conveying Equipment
3421	Cutlery	3536	Hoists, Cranes, and Monorails
3423	Hand and Edge Tools, Nec	3537	Industrial Trucks and Tractors
3425	Hand Saws and Saw Blades	354	Metalworking Machinery and Equipment
3429	Hardware, Nec	3541	Machine Tools Metal Cutting Types
343	Heating Equipment, Except Electric & Warm	3542	Machine Tools Metal Forming Types
	Air; & Plumbing Fixtures	3543	Industrial Patterns
3431	Metal Sanitary Ware	3544	Special Dies/tools/jigs/fixtures
3432	Plumbing Fittings & Brass Good	3545	Machine Tool Accessories
3433	Heating Equipment, Except Elec	3546	Power Driven Hand Tools
344	Fabricated Structural Metal Products	3547	Rolling Mill Machinery
3441	Fabricated Structural Metal	3548	Welding Apparatus
3442	Metal Doors, Sash, and Trim	3549	Metalworking Machinery, Nec
3443	Fabricated Plate Work (Boiler Shops)	355	Special Industry Machinery, Except
3444	Sheet Metal Work		Metalworking Machinery
3446	Architectural Metal Work	3551	Food Products Machinery
3448	Prefabricated Metal Buildings	3552	Textile Machinery
3449	Miscellaneous Metal Work	3553	Woodworking Machinery
345	Screw Machine Products, Bolts, Nuts,	3554	Paper Industries Machinery
	Screws, Rivets, and Washers	3555	Printing Trades Machinery
3451	Screw Machine Products	3556	Food Products Machinery
3452	Bolts Nuts Rivets & Washers	3559	Special Industry Machinery Nec
346	Metal Forgings and Stampings	356	General Industrial Machinery and Equipment
3462	Iron and Steel Forgings	3561	Pumps and Pumping Equipment
3463	Nonferrous Forgings	3562	Ball and Roller Bearings
3465	Automotive Stampings	3563	Air and Gas Compressors
3466	Crowns and Closures	3564	Blowers and Fans
3469	Metal Stampings, Nec	3565	Packaging Machinery
347	Coating, Engraving, and Allied Services	3566	Speed Changers Drives & Gears
3471	Electroplating, polishing, anodizing, and	3567	Industrial Furnaces and Ovens
	Coloring	3568	Power Transmission Equipment
3479	Metal Coating and Allied Services,nec	3569	Gen Industrial Machinery, Nec
348	Ordnance and Accessories, Except Vehicles	357	Computer and Office Equipment
	and Guided Missiles	3571	Electronic Computers
3482	Small Arms Ammunition	3572	Computer Storage Devices
3483	Ammunition, Exc. For Small Arm	3573	Electronic Computing Equipment
3484	Small Arms	3574	Calculating & Accounting Mach
3489	Ordnance and Accessories, Nec	3575	Computer Terminals
349	Misc Fabricated Metal Products	3576	Scales & Balances Exc Lab
3491	Industrial Valves	3577	Computer Peripheral Equipment, Nec
3492	Fluid Power Valves and Hose Fittings	3578	Calculating and Accounting Equipment
3493	Steel Springs, Except Wire	3579	Office Machines, Nec
3494	Valves and Pipe Fittings	358	Refrigeration & Service Industry Machinery
3495	Wire Springs	3581	Automatic Vending Machines
3496	Misc. Fabricated Wire Products	3582	Commercial Laundry Equipment
3497	Metal Foil and Leaf	3585	Refrigeration & Heating Equipment
3498	Fabricated Pipe and Fittings	3586	Measuring and Dispensing Pumps
3499	Fabricated Metal Products, Nec	3589	Service Industry Machinery Nec
35	Industrial and Commercial Machinery &	359	Misc Industrial & Commercial Machinery and
	Computer Equ		Equipment
351	Engines and Turbines		

3592	Carburetors, Pistons, Rings, & Valves	371	Motor Vehicles & Motor Vehicle Equipment
3593	Fluid Power Cylinders and Actuators	3711	Motor Vehicles and Car Bodies
3594	Fluid Power Pumps and Motors	3713	Truck and Bus Bodies
3596	Scales and Balances, Except Laboratory	3714	Motor Vehicle Parts & Accessories
3599	Machinery Exc Electrical Nec	3715	Truck Trailers
36	Electronic & Other Electrical Equipment &	3716	Motor Homes
	Components	372	Aircraft and Parts
361	Electric Transmission and Distribution	3721	Aircraft
2612	Equipment	3724	Aircraft Engines & Engine Part
3612	Transformers	3728	Aircraft Equipment, Nec
3613	Switchgear & Switchboard Apparatus	373	Ship and Boat Building and Repairing
362 3621	Electrical Industrial Apparatus	3731	Ship Building and Repairing
3622	Motors and Generators Industrial Controls	3732 374	Boat Building and Repairing Railroad Equipment
3623	Welding Apparatus, Electric	3743	Railroad Equipment
3624	Carbon and Graphite Products	3743 375	Motorcycles, Bicycles, and Parts
3625	Relays and Industrial Controls	3751	Motorcycles Bicycles & Parts
3629	Elec Industrial Apparatus, Nec	376	Guided Missiles and Space Vehicles and
363	Household Appliances	370	Parts
3631	Household Cooking Equipment	3761	Guided Missiles and Space Vehicles
3632	Household Refrigerators/freezers	3764	Missile/space Propulsion Units & Parts
3633	Household Laundry Equipment	3769	Space Vehicle Equipment, Nec
3634	Electric Housewares and Fans	379	Miscellaneous Transportation Equipment
3635	Household Vacuum Cleaners	3792	Travel Trailers and Campers
3636	Sewing Machines	3795	Tanks and Tank Components
3639	Household Appliances, Nec	3799	Transportation Equipment, Nec.
364	Electric Lighting and Wiring Equipment	38	Measuring, Analyzing & Controlling
3641	Electric Lamps		Instruments
3643	Current-carrying Wiring Device	381	Search and Navigation Equipment
3644	Noncurrent-carrying Wiring Devices	3811	Engineering & Scientific Instruments
3645	Residential Lighting Fixtures	3812	Search and Navigation Equipment
3646	Commercial Lighting Fixtures	382	Lab Apparatus, Analytical, Optical,
3647	Vehicular Lighting Equipment		Measure,&control Instruments
3648	Lighting Equipment, Nec	3821	Laboratory Apparatus and Furniture
365	Household Audio and Video Equipment, and	3822	Environmental Controls
	Audio Recordings	3823	Process Control Instruments
3651	Radio and TV Receiving Sets	3824	Fluid Meters & Counting Device
3652	Phonograph Records	3825	Instruments to Measure Elec
366	Communications Equipment	3826	Analytical Instruments
3661	Telephone/telegraph Apparatus	3827	Optical Instruments and Lenses
3662	Radio & TV Communication Equipment	3829	Measuring & Controlling Device
3663 3669	Radio and TV Communications Equipment	3832 384	Optical Instruments and Lenses
367	Communications Equipment, Nec Electronic Components and Accessories	304	Surgical, Medical, Dental Instruments & Supplies
3671	Electron Tubes, Receiving Type	3841	Surgical & Medical Instruments
3672	Printed Circuit Boards	3842	Surgical Appliances & Supplies
3673	Electron Tubes, Transmitting	3843	Dental Equipment and Supplies
3674	Semiconductors & Related Devices	3844	X-ray Apparatus and Tubes
3675	Electronic Capacitors	3845	Electromedical Equipment
3676	Electronic Resistors	385	Ophthalmic Goods
3677	Electronic Coils & Transformer	3851	Ophthalmic Goods
3678	Electronic Connectors	386	Photographic Equipment and Supplies
3679	Electronic Components, Nec	3861	Photograph Equipment & Supplies
369	Misc Electrical Machinery, Equipment, and	387	Watches, Clocks, Clockwork Operated
	Supplies		Devices, & Parts
3691	Storage Batteries	3873	Watches Clocks & Watchcases
3692	Primary Batteries, Dry and Wet	39	Miscellaneous Manufacturing Industries
3693	X-ray Apparatus and Tubes	391	Jewelry, Silverware, and Plated Ware
3694	Engine Electrical Equipment	3911	Jewelry, Precious Metal
3695	Magnetic and Optical Recording Media	3914	Silverware and Plated Ware
3699	Electrical Equipment & Supply	3915	Jewelers' Materials & Lapidary
37	Transportation Equipment	393	Musical Instruments

SIC

DESCRIPTION

3931	Musical Instruments	423	Terminal & Joint Terminal Maintenance
394	Dolls, Toys, Games and Sporting and		Facilities: Motor Freight Trans
	Athletic Goods	4231	Trucking Terminal Facilities
3942	Dolls	43	United States Postal Service
3944	Games/toys/children's Vehicles	431	Unite States Postal Service
3949	Sporting & Athletic Goods Nec	4311	United States Postal Service
395	Pens, Pencils, and Other Artists' Materials	44	Water Transportation
3951	Pens and Mechanical Pencils	441	Deep Sea Foreign Transportation of Freight
3952	Lead Pencils and Art Goods	4411	Deep Sea Foreign Transportation
3953	Marking Devices	4412	Deep Sea Foreign Transportation of Freight
3955	Carbon Paper and Inked Ribbons	442	Deep Sea Domestic Transportation of Freight
396	Costume Jewelry and Notions, Except	4421	Noncontiguous Area Transportation
	Precious Metal	4422	Coastwise Transportation
3961	Costume Jewelry	4423	Intracoastal Transportation
3962	Artificial Flowers	4424	Deep Sea Domestic Transportation of Freight
3963	Buttons	443	Freight Transportation on the Great Lakes-st
3964	Needles, Pins, and Fasteners	4.421	Lawrence Seaway
3965	Fasteners, Buttons, Needles and Pins	4431	Great Lakes Transportation
399	Miscellaneous Manufacturing Industries	4432	Freight Transportation on the Great Lakes
3991	Brooms and Brushes	444	Water Transportation of Freight, Nec
3993	Signs and Advertising Displays	4441	Transport on Rivers & Canals
3995	Burial Caskets	4449	Water Transportation of Freight, Nec
3996 3999	Hard Surface Floor Coverings	4452	Ferries
	Manufacturing Industries, Nec	4453	Lighterage
40	Railroad Transportation Railroads	4454 4459	Towing and Tugboat Service
401			Local Water Transportation Nec
4011	Railroads, Line-haul Operating	4463 4464	Marine Cargo Handling
4013 4041	Switching & Terminal Services Railway Express Service	4469	Canal Operation Water Transportation Services
4041	Local & Suburban Transit & Interurban	448	Water Transportation of Passengers
41	Highway Pass	4481	Deep Sea Passenger Transportation, Except
411	Local and Suburban Passenger Transportation	4401	by Ferry
4111	Local and Suburban Transit	4482	Ferries
4119	Local Passenger Transportation	4489	Water Passenger Transportation, Nec
412	Taxicabs	449	Water Transportation Services
4121	Taxicabs	4491	Marine Cargo Handling
413	Intercity and Rural Bus Transportation	4492	Towing and Tug Boat Service
4131	Intercity Hgwy Transportation	4493	Marinas
414	Bus Charter Service	4499	Water Transportation Services, Nec
4141	Local Passenger Charter Service	45	Transportation by Air
4142	Charter Service, Except Local	451	Air Transportation, Scheduled, & Air Courier
415	School Buses		Services
4151	School Buses	4511	Certificated Air Transportation
417	Terminal & Service Facilities: Motor Vehicle	4512	Air Transportation, Scheduled
	Passenger Transportation	4513	Air Courier Services
4171	Bus Terminal Facilities	452	Air Transportation, Nonscheduled
4172	Bus Service Facilities	4521	Noncertified Air Transportation
4173	Bus Terminal and Service Facilities	4522	Air Transportation, Non-scheduled
42	Motor Freight Transportation and	458	Airports, Flying Fields, and Airport Terminal
	Warehousing		Services
421	Trucking and Courier Services, Except Air	4581	Airports, Flying Fields, and Services
4212	Local/trucking Without Storage	4582	Airports and Flying Fields
4213	Trucking, Except Local	4583	Airport Terminal Services
4214	Local Trucking and Storage	46	Pipelines, Except Natural Gas
4215	Courier Services, Except by Air	461	Pipelines, Except Natural Gas
422	Public Warehousing and Storage	4612	Crude Petroleum Pipe Lines
4221	Farm Product Warehousing/store	4613	Refined Petroleum Pipe Lines
4222	Refrigerated Warehousing	4619	Pipe Lines, Nec
4224	Household Goods Warehousing	47	Transportation Services
4225	General Warehousing & Storage	4712	Freight Forwarding
4226	Special Warehousing & Storage	472	Passenger Transportation Arrangement
		4722	Passenger Transport Arrangement

4500	T. I.I. T.	500	T
4723 4724	Freight Transport Arrangement	502 5021	Furniture and Homefurnishings
4724	Travel Agencies Tour Operators	5021	Furniture Home Furnishings
4729	Passenger Transport Management, Nec	5023	Lumber and Construction Materials
473	Freight and Cargo Transportation	5031	Lumber, Plywood and Millwork
175	Arrangement	5032	Brick, Stove, and Related Materials
4731	Freight Transportation Management	5033	Roofing, Siding and Insulation
474	Rental of Railroad Cars	5039	Construction Materials, Nec
4741	Rental of Railroad Cars	504	Professional and Commercial Equipment and
4742	Railroad Car Rental with Serv		Supplies
4743	Railroad Rental Car W/o Serv	5041	Sporting & Recreational Goods
478	Miscellaneous Transportation Services	5042	Toys & Hobby Goods and Supplies
4782	Inspection & Weighing Services	5043	Photograph Equipment & Supply
4783	Packing and Crating	5044	Office Equipment
4784	Fixed Facilities for Vehicles	5045	Computers, Peripherals, and Software
4785	Inspection and Fixed Facilities	5046	Commercial Equipment, Nec
4789	Transportation Services, Nec	5047	Medical and Hospital Equipment
48	Communications	5048	Ophthalmic Goods
481	Telephone Communications	5049	Professional Equipment, Nec
4811 4812	Telephone Communication Radio Telephone Communications	505 5051	Metals and Minerals, Except Petroleum Metals Serv Centers & Offices
4813	Telephone Communications, Except Radio	5051	Coal & Other Minerals & Orres
482	Telegraph and Other Message	506	Electrical Goods
402	Communications	5063	Elec Apparatus & Equipment
4821	Telegraph Communication	5064	Elec Appliances TV & Radios
4822	Telegraph and Other Communications	5065	Electronic Parts and Equipment
483	Radio & Television Broadcasting Stations	507	Hardware, Plumbing, Heating Equipment and
4832	Radio Broadcasting		Supplies
4833	Television Broadcasting	5072	Hardware
484	Cable and Other Pay Television Services	5074	Plumbing/hydronics Heat Supply
4841	Cable and Other Pay TV Services	5075	Warm Air Heat & Air Condition
489	Communications Services, Nec	5078	Refrigeration Equip & Supplies
4899	Communication Services, Nec	508	Machinery, Equipment, and Supplies
49 491	Electric, Gas and Sanitary Services Electric Services	5081	Commercial Machines & Equipment
4911	Electric Services	5086 5087	Professional Equipment & Supplies Service Establishment Equipment
492	Gas Production and Distribution	5088	Transportation Equipment & Sup
4922	Natural Gas Transmission	509	Miscellaneous Durable Goods
4923	Gas Transmission and Distribution	5091	Sporting and Recreational Goods
4924	Natural Gas Distribution	5092	Toys and Hobby Goods and Supplies
4925	Gas Production/distribution	5093	Scrap and Waste Materials
493	Combination Electric, Gas, and Other Utility	5094	Jewelry, Watches, & Precious Stones
	Services	5099	Durable Goods, Nec
4931	Elec & Other Services Combined	51	Wholesale Trade-nondurable Goods
4932	Gas & Other Services Combined	511	Paper and Paper Products
4939	Combination Utility Services	5111	Printing and Writing Paper
494	Water Supply	5112	Stationery Supplies
4941	Water Supply	5113	Industrial & Personal Service
4950	Sanitary Services	512	Drugs, Drug Proprietaries, & Druggists'
4952 4953	Sewerage Systems Refuse Systems	5122	Sundries Drugs, Proprietaries, and Sundries
4959	Sanitary Services, Nec	513	Apparel, Piece Goods, and Notions
496	Steam and Air-conditioning Supply	5131	Piece Goods and Notions
4961	Steam Supply	5133	Piece Goods
497	Irrigation Systems	5134	Notions and Other Dry Goods
4971	Irrigation Systems	5136	Men's Clothing and Furnishings
50	Wholesale Trade-durable Goods	5137	Women's and Children's Clothing
501	Motor Vehicles, Parts, and Supplies	5139	Footwear
5012	Autos & Other Motor Vehicles	514	Groceries and Related Products
5013	Automotive Parts and Supplies	5141	Groceries, General Line
5014	Tires and Tubes	5142	Frozen Foods
5015	Motor Vehicle Parts, Used	5143	Dairy Products

5144	Poultry and Poultry Products	5451	Dairy Products Stores
5145	Confectionery	546	Retail Bakeries
5146	Fish and Seafoods	5461	Retail Bakeries
5147	Meats and Meat Products	5462	Retail Bakeries-baking and Selling
5148	Fresh Fruits and Vegetables	5463	Retail Bakeries-selling Only
5149	Groceries and Related Products	5490	Miscellaneous Food Stores
515	Farm-product Raw Materials	5499	Miscellaneous Food Stores
5152	Cotton	55	Automotive Dealers and Gasoline Service
5153	Grain		Stations
5154	Livestock	551	Motor Vehicle Dealers (New & Used)
5159	Farm-product Raw Materials, Nec	5511	New and Used Car Dealers
516	Chemicals and Allied Products	552	Motor Vehicle Dealers (Used Only)
5161	Chemicals and Allied Products	5521	Used Car Dealers
5162	Plastics Materials and Basic Shapes	553	Auto and Home Supply Stores
5169	Chemicals and Allied Products, Nec	5531	Auto and Home Supply Stores
517	Petroleum and Petroleum Products	554	Gasoline Service Stations
5171	Petroleum Bulk Stations & Terminals	5541	Gasoline Service Stations
5172	Petroleum Products, Nec	555	Boat Dealers
518	Beer, Wine, and Distilled Alcoholic	5551	Boat Dealers
	Beverages	556	Recreational Vehicle Dealers
5181	Beer and Ale	5561	Recreational Vehicle Dealers
5182	Wines and Distilled Beverages	557	Motorcycle Dealers
519	Misc Nondurable Goods	5571	Motorcycle Dealers
5191	Farm Supplies	559	Automotive Dealer, Nec
5192	Books, Periodicals and Newspapers	5599	Automotive Dealers, Nec
5193	Flowers and Florists Supplies	56	Apparel and Accessory Stores
5194	Tobacco and Tobacco Products	561	Men's & Boys' Clothing & Accessory Stores
5198	Paints, Varnishes, and Supplies	5611	Men's & Boys' Clothing & Accessory Stores
5199	Nondurable Goods, Nec	562	Women's Clothing Stores
52	Building Materials, Hardware, Garden	5621	Women's Ready-to-wear Stores
32	Supply, Mobil	563	Women's Accessory & Specialty Stores
521	Lumber and Other Building Materials	5631	Women's Accessory and Specialty Stores
321	Dealers	5632	Women's Accessory and Specialty Stores
5211	Lumber and Other Building Materials	564	Children's & Infants' Wear Stores
523	Paint, Glass, and Wallpaper Stores	5641	Children's and Infants' Wear Stores
5231	Paint, Glass, and Wallpaper Stores	565	Family Clothing Stores
525	Hardware Stores	5651	Family Clothing Stores
5251	Hardware Stores	566	Shoe Stores
526	Retail Nurseries, Lawn & Garden Supply Stores	5661	Shoe Stores
5261	Retail Nurseries and Garden Stores	5681	Furriers and Fur Shops
527	Mobile Home Dealers	569	Misc Apparel & Accessory Stores
5271	Mobile Home Dealers	5699	Miscellaneous Apparel & Access
53	General Merchandise Stores	57	Home Furniture, Furnishings & Equipment
531	Department Stores	31	Stores
5311	Department Stores Department Stores	571	Home Furniture & Furnishings Stores
533	Variety Stores	5712	Furniture Stores
5331	Variety Stores Variety Stores	5712	Floor Covering Stores
539	Misc. General Merchandise Stor	5713	Drapery and Upholstery Stores
5399	Misc. General Merchandise Stores	5714	Misc Home Furnishings Stores
	Food Stores	5719	
54		5722	Household Appliance Stores
541	Grocery Stores		Household Appliance Stores
5411	Grocery Stores Most and Specified Markets, Including Program	573	Radio, Television, Consumer Electronics, and
542	Meat and Seafood Markets, Including Freezer	5721	Music Stores
5421	Provisioners Most and Eigh Morkets	5731 5732	Radio, Television and Electronic Stores
5421	Meat and Fish Markets	5732	Radio and Television Stores
5422	Freezer and Locker Meat Provisions	5733	Music Stores
5423	Meat and Fish (Seafood) Market	5734 5735	Computer and Software Stores
543	Fruit and Vegetable Markets	5735	Record and Prerecorded Tape Stores
5431	Fruit Stores and Vegetable Markets	5736	Musical Instrument Stores
544	Candy, Nut, and Confectionery Stores	58 591	Eating and Drinking Places
5441	Candy, Nut, and Confectionery	581	Eating and Drinking Places
SIC	DESCRIPTION	SIC	DESCRIPTION
SIC	DESCRIPTION	SIC	DESCRIPTION

5812 Eating Places

545

Dairy Products Stores

5813	Drinking Places	606	Credit Unions
59	Miscellaneous Retail	6061	Federal Credit Unions
591	Drug Stores and Proprietary Stores	6062	State Credit Unions
5912	Drug Stores and Proprietary Stores	608	Foreign Banking and Branches & Agencies of
592	Liquor Stores		Foreign Banks
5921	Liquor Stores	6081	Foreign Bank and Branches and Agencies
593	Used Merchandise Stores	6082	Foreign Trade and International Banks
5931	Used Merchandise Stores	609	Depository Banking Functions
5932	Used Merchandise Stores	6091	Nondeposit Trust Facilities
594	Misc Shopping Goods Stores	6099	Functions Related to Deposit Banking
5941	Sporting Goods and Bicycle Shops	61	Nondepository Credit Institutions
5942	Book Stores	611	Federal & Federally-sponsored Credit
5943	Stationery Stores		Agencies
5944	Jewelry Stores	6111	Federal and Federally-sponsored Credit
5945	Hobby, Toy, and Game Shops	6112	Rediscounting, Not for Agriculture
5946	Camera & Photographic Supply Stores	6113	Rediscounting, for Agriculture
5947	Gift, Novelty, and Souvenir Shops	6122	Federal Saving & Loan Associations
5948	Luggage and Leather Goods Stor	6123	State Associations, Insured
5949	Sewing, Needlework, and Piece Goods	6124	State Associations, Noninsured
	Stores	6125	State Associations, Noninsured
596	Nonstore Retailers	6131	Agricultural Credit Institutions
5961	Mail Order Houses	614	Personal Credit Institutions
5962	Merchandising Machine Operator	6141	Personal Credit Institutions
5963	Direct Selling Organizations	6142	Federal Credit Unions
598	Fuel Dealers	6143	State Credit Unions
5982	Fuel and Ice Dealers, Nec	6144	Nondeposit Industrial Loan Companies
5983	Fuel Oil Dealers	6145	Licensed Small Loan Lenders
5984	Liquefied Petroleum Gas Dealers	6146	Installment Sales Finance Companies
5989	Fuel Dealers, Nec	6149	Misc. Personal Credit Institutions
599	Retail Stores, Nec	615	Business Credit Institutions
5992	Florists	6153	Short-term Business Credit
5993	Cigar Stores and Stands	6159	Misc Business Credit Institute
5994	News Dealers and Newsstands	616	Mortgage Bankers and Brokers
5995	Optical Goods Stores	6162	Mortgage Bankers and Correspondents
5999	Miscellaneous Retail Stores, N	6163	Loan Brokers
60	Depository Institutions	62	Security & Commodity Brokers, Dealers,
601	Central Reserve Depository Institutions		Exchanges
6011	Federal Reserve Banks	621	Security Brokers, Dealers, & Flotation
6019	Central Reserve Depository, Nec	021	Companies
602	Commercial Banks	6211	Security Brokers and Dealers
6021	National Commercial Banks	622	Commodity Contracts Brokers & Dealers
6022	State Banks, Federal Reserve	6221	Commodity Contracts Brokers, Dealers
6023	State Banks, Not Fed. Reserve,	623	Security and Commodity Exchanges
6024	State Banks, Not Fed Res., Not	6231	Security and Commodity Exchanges
6025	National Banks, Federal Reserve	628	Exchange of Security and Commodity
6026	National Banks, Not Fed. Res.,		Services
6027	National Banks, Not Fdic	6281	Security and Commodity Service
6028	Private Banks, Not Incorp., No	6282	Investment Advice
6029	Commercial Banks, Nec	6289	Security and Commodity Services, Nec
603	Savings Institutions	63	Insurance Carriers
6032	Mutual Savings Banks, Federal	631	Life Insurance
6033	Mutual Savings Banks, Nec	6311	Life Insurance
6034	Mutual Savings Banks, Not Fdic	632	Accident & Health Insurance & Medical
6035	Federal Savings Institutions	032	Service Plans
6036	Savings Institutions, Except Federal	6321	Accident and Health Insurance
6042	Nondeposit Trusts, Federal Res	6324	Hospital and Medical Service Plans
6044	Nondeposit Trusts, Not Fdic	633	Fire, Marine, and Casualty Insurance
6052	Foreign Exchange Establishment	6331	Fire, Marine, and Casualty Ins
6054	Safe Deposit Companies	635	Surety Insurance
6055	Clearinghouse Associations	6351	Surety Insurance Surety Insurance
6056	Corporations for Banking Abroad	636	Title Insurance
0000	Corporations for Danking Autoau	050	THE HISHIGHE
SIC	DESCRIPTION	SIC	DESCRIPTION
SIC	DESCRIPTION	SIC	DESCRIPTION
<0.50			m' i I

6361

Title Insurance

6059

Functions Related to Banking,

637	Pension, Health, and Welfare Funds	7215	Coin-operated Laundries and Drycleaning
6371	Pension, Health, and Welfare Funds	7216	Dry Cleaning Plants, Except Rugs
639	Insurance Carriers, Nec	7217	Carpet and Upholstery Cleaning
6399	Insurance Carriers, Nec	7218	Industrial Launderers
64	Insurance Agents, Brokers and Service	7219	Laundry and Garment Services,
641	Insurance Agents, Brokers, and Service	722	Photographic Studios, Portrait
6411	Insurance Agents, Brokers & Service	7221	Photographic Studios, Portrait
65	Real Estate	723	Beauty Shops
651	Real Estate Operators (Exceptrvice	7231	Beauty Shops
	Developers) & Lessors	724	Barber Shops
6512	Nonresidential Building Operators	7241	Barber Shops
6513	Apartment Building Operators	725	Shoe Repair and Shoeshine Parlors
6514	Dwelling Operators, Exc. Apart	7251	Shoe Repair Shops and Shoeshine Parlors
6515	Mobile Home Site Operators	726	Funeral Service and Crematories
6517	Railroad Property Lessors	7261	Funeral Service and Crematories
6519	Real Property Lessors, Nec	729	Miscellaneous Personal Services
653	Real Estate Agents and Managers	7291	Tax Return Preparation Services
6531	Real Estate Agents and Manager	7299	Miscellaneous Personal Service
654	Title Abstract Offices	73	Business Services
	Title Abstract Offices Title Abstract Offices		
6541		731	Advertising
655	Land Subdividers and Developers	7311	Advertising Agencies
6552	Subdividers & Developers, Exc Cemeteries	7312	Outdoor Advertising Services
6553	Cemetery Subdividers and Developers	7313	Radio, TV, Publisher Advertising
6611	Combined Real Estate, Insurance		Representatives
67	Holding and Other Investment Offices	7319	Advertising, Nec
671	Holding Offices	732	Credit & Mercantile Reporting, Adjustment
6711	Holding Offices		& Collection Agencies
6712	Bank Holding Companies	7321	Credit Reporting and Collection
6719	Holding Companies, Nec	7322	Adjustment and Collection Services
672	Investment Offices	7323	Credit Reporting Services
6722	Management Investment, Open-end	733	Mailing,reproduction,commercial Art,
6723	Management Investment, Closed-end	133	Photography, & Steno Services
6724	Unit Investment Trusts	7221	
		7331	Direct Mail Advertising Service
6725	Face-amount Certificate Offices	7332	Blueprinting and Photocopying
6726	Investment Offices, Nec	7333	Commercial Photography and Art
673	Trusts	7334	Photocopying and Duplicating Services
6732	Educational, Religious, Etc. T	7335	Commercial Photography
6733	Trusts, Nec	7336	Commercial Art and Graphic Design
679	Miscellaneous Investing	7338	Secretarial and Court Reporting
6792	Oil Royalty Traders	7339	Stenographic and Reproduction,nec
6793	Commodity Traders	734	Services to Dwellings & Othernec Buildings
6794	Patent Owners and Lessors	7341	Window Cleaning
6798	Real Estate Investment Trusts	7342	Disinfecting and Exterminating
6799	Investors, Nec	7349	Building Maintenance Services,
70	Hotels, Rooming Houses, Camps & Other	735	Misc Equipment Rental & Leasing
70	Lodging Plac	7351	News Syndicates
701	Hotels and Motels	7352	Medical Equipment Rental
701			
	Hotels and Motels	7353	Heavy Construction Equipment Rental
702	Rooming and Boarding Houses	7359	Equipment Rental and Leasing, Nec
7021	Rooming and Boarding Houses	736	Personnel Supply Services
703	Camps and Recreational Vehicle Parks	7361	Employment Agencies
7032	Sporting and Recreational Camp	7362	Temporary Help Supply Services
7033	Recreational Vehicle Parks and Campsites	7363	Help Supply Services
704	Membership-basis: Organization Hotels &	7369	Personnel Supply Services, Nec
	Lodging Houses	737	Computer and Data Processing Services
7041	Membership-basis Organization	7371	Custom Computer Programming Services
72	Personal Services	7372	Prepackaged Software
721	Laundry, Cleaning, and Garment Services	7373	Computer Integrated Systems Design
7211	Power Laundries, Family & Commercial	7374	Data Processing Services
7212	Garment Pressing & Cleaners' Agents	7375	Information Retrieval Services
7212	Linen Supply	,515	2111 Office of the Services
1213	Emen Suppry		

7376	Computer Facilities Management	782	Motion Picture Distribution & Allied
7377	Computer Rental and Leasing		Services
7378	Computer Maintenance and Repair	7822	Motion Picture and Tape Distribution
7379	Computer Related Services, Nec	7823	Motion Picture Film Exchanges
738	Miscellaneous Business Services	7824	Film or Tape Distribution for TV
7381	Detective and Armored Car Services	7829	Motion Picture Distribution Services
7382	Security Systems Services	783	Motion Picture Theaters
7383	News Syndicate	7832	Motion Picture Theaters, Except Drive-ins
7384	Photofinishing Laboratories	7833	Drive-in Motion Picture Theaters
7389	Business Services, Nec	784	Video Tape Rental
7391	Research & Development Laboratories	7841	Video Tape Rental
7392	Management and Public Relations	79 701	Amusement and Recreation Services
7393	Detective and Protective Services	791	Dance Studios, Schools, & Halls
7394	Equipment Rental and Leasing	7911	Dance Halls, Studios, and Schools
7395	Photofinishing Laboratories	792	Theatrical Producers (Non Motion Picture),
7396 7397	Trading Stamp Services	7922	Orchestras, Entertainers Theatrical Producers and Services
	Commercial Testing Laboratories		
7399 75	Business Services, Nec Automotive Repair, Services & Parking	7929 793	Entertainers & Entertainment Groups
75 751		793 7932	Bowling Centers Billiard and Pool Establishments
/31	Automotive Rental and Leasing, Without Drivers	7932 7933	Bowling Alleys
7512	Passenger Car Rental and Leasing	7933 794	Commercial Sports
7512	Truck Rental and Leasing	794 7941	Sports Clubs and Promoters
7513	Passenger Car Rental	7948	Racing, Including Track Operation
7514	Passenger Car Leasing	7948 799	Misc Amusement and Recreation Services
7515 7519	Utility Trailer Rental	799 7991	Physical Fitness Facilities
7519	Automobile Parking	7992	Public Golf Courses
7521	Automobile Parking Automobile Parking	7993	Coin-operated Amusement Device
7523	Parking Lots	7996	Amusement Parks
7525	Parking Structures	7997	Membership Sports & Recreation Clubs
753	Automotive Repair Shops	7999	Amusement and Recreation, Nec
7531	Top and Body Repair Shops	80	Health Services
7532	Top and Body Repair and Paint Shops	801	Offices & Clinics of Medical Doctors
7533	Auto Exhaust System Repair Shops	8011	Offices of Physicians
7534	Tire Retreading and Repair Shops	802	Offices and Clinics of Dentists
7535	Paint Shops	8021	Offices of Dentists
7536	Automotive Glass Replacement Shops	803	Offices of Osteopathic Doctors
7537	Automotive Transmission Repair Shops	8031	Offices of Osteopathic Physicians
7538	General Automotive Repair Shop	804	Offices & Clinics of Other Health
7539	Automotive Repair Shops, Nec		Practitioners
754	Automotive Services, Except Repair	8041	Offices of Chiropractors
7542	Car Washes	8042	Offices of Optometrists
7549	Automotive Services, Nec	8043	Offices and Clinics of Podiatrists
76	Miscellaneous Repair Services	8049	Offices of Health Practitioner
7620	Electrical Repair Shops	805	Nursing and Personal Care Facilities
7622	Radio and Television Repair	8051	Skilled Nursing Care Facilities
7623	Refrigeration Service and Repair Shops	8052	Intermediate Care Facilities
7629	Electrical Repair Shops, Nec	8059	Nursing and Personal Care, Nec
763	Watch, Clock, and Jewelry Repair	806	Hospitals
7631	Watch, Clock, and Jewelry Repair Shops	8061	Hospitals
764	Reupholstery and Furniture Repair	8062	General Medical & Surgical Hospitals
7641	Reupholstery and Furniture Repair	8063	Psychiatric Hospitals
769	Misc Repair Shops and Related Services	8069	Specialty Hospitals, Except Psychiatric
7692	Welding Repair	807	Medical and Dental Laboratories
7694	Armature Rewinding Shops	8071	Medical Laboratories
7699	Repair Services, Nec	8072	Dental Laboratories
78 701	Motion Pictures	808	Home Health Care Services
781	Motion Picture Production & Allied Services	8081	Outpatient Care Facilities
7812	Motion Picture and Video Production	8082	Home Health Care Services
7813	Motion Picture Production, Except TV	809	Misc Health & Allied Services, Nec
7814	Motion Picture Production for TV	8091	Health and Allied Services, Nec
7819	Services Allied to Motion Pictures	8092	Kidney Dialysis Centers

_	pecialty Outpatient Clinics, Nec	8712	Architectural Services
8000 Ha			
	ealth and Allied Services, Nec	8713	Surveying Services
	egal Services	872	Accounting, Auditing, & Bookkeeping
811 Le	egal Services		Services
	egal Services	8721	Accounting, Auditing, and Bookkeeping
	lucational Services	873	Research, Development, & Testing Services
821 Ele	ementary and Secondary Schools	8731	Commercial Physical Research
8211 Ele	ementary and Secondary Schools	8732	Commercial Nonphysical Research
	olleges, Universities, Professional Schools,	8733	Noncommercial Research Organizations
&	z Junior Colleges	8734	Testing Laboratories
8221 Co	olleges and Universities, Nec	874	Management & Public Relations Services
8222 Jur	nior Colleges	8741	Management Services
823 Lib	braries	8742	Management Consulting Services
8231 Lib	braries and Information Centers	8743	Public Relations Services
824 Vo	ocational Schools	8744	Facilities Support Services
8241 Co	orrespondence Schools	8748	Business Consulting, Nec
8243 Da	ata Processing Schools	88	Private Households
	usiness and Secretarial Schools	881	Private Households
8249 Vo	ocational School,nec	8811	Private Households
829 Scl	chools & Educational Services, Nec	89	Services Not Elsewhere Classified
	chools & Educational Services	8911	Engineering & Architectural Services
83 Soc	ocial Services	8922	Noncommercial Research Organizations
832 Ind	dividual and Family Social Services	8931	Accounting, Auditing & Bookkeeping
	dividual and Family Services	899	Services, Nec
	dividual and Family Services	8999	Services, Nec
	b Training, Vocational Rehabilitation	91	Executive, Legislative & General Government
	ervices		Exc Fi
8331 Job	b Training and Related Services	911	Executive Offices
	nild Day Care Services	9111	Executive Offices
	nild Day Care Services	9120	Legislative Bodies
	esidential Care	9121	Legislative Bodies
	esidential Care	913	Executive & Legislative Offices Combined
	ocial Services, Nec	9131	Executive and Legislative Combined
	ocial Services, Nec	919	General Government, Nec
	useums, Art Galleries & Botanical &	9199	General Government, Nec
	pological Ga	92	Justice, Public Order and Safety
	useums and Art Galleries	921	Courts
	useums and Art Galleries	9211	Courts
	useums and Art Galleries	922	Public Order and Safety
	rboreta, Botanical, or Zoological Gardens	9221	Police Protection
	otanical and Zoological Garden s	9222	Legal Counsel and Prosecution
	otanical and Zoological Gardens	9223	Correctional Institutions
	embership Organizations	9224	Fire Protection
	usiness Associations	9229	Public Order and Safety, Nec
	usiness Associations	93	Public Finance, Taxation & Monetary Policy
	ofessional Membership Organizations	931	Public Finance, Taxation, & Monetary Policy
	ofessional Organizations	9311	Finance, Taxation & Monetary Policy
	abor Unions/similar Labor Organizations	94	Administration of Human Resource Programs
	abor Organizations	941	Educational Programs Administration
	vic, Social, & Fraternal Associations	9411	Educational Programs Administration
	vic and Social Associations	943	Public Health Programs Administration
	olitical Organizations	9431	Public Health Program Administration
	olitical Organizations	944	Social, Human Resource & Income
	eligious Organizations		Maintenance Program Administration
	eligious Organizations	9441	Admin of Social & Manpower Programs
	embership Organizations, Nec	945	Veterans' Affairs (Except Health &
	embership Organizations, Nec		Insurance) Administration
	ngineering, Accounting, Research,	9451	Administration of Veterans' Affairs
	anagement	95	Admin. Of Environmental, Quality & Housing
	ngineering, Architectural, & Surveying		Program
	ervices	951	Environmental Quality Programs
	ngineering Services		Administration
0/11 EN			

9511	Air, Water & Solid Waste Management
9512	Land, Mineral, Wildlife Conservation
953	Housing & Urban Development Programs
	Administration
9531	Housing Programs
9532	Urban and Community Development
96	Administration of Economic Programs
961	General Economic Program Administration
9611	Admin of General Economic Programs
962	Transportation Programs Regulation &
	Administration
9621	Regulation, Admin. Of Transportation
963	Communications, electric, gas, & Utilities
	Regulation & Administration
9631	Regulation, Admin of Utilities
964	Agricultural Marketing & Commodities
	Regulation
9641	Regulation of Agricultural Marketing &
	Commodities
965	Misc Commercial Sectors Regulation,
	Licensing, & Inspection
9651	Regulation Misc. Commercial Sectors
966	Space Research and Technology
9661	Space Research and Technology
97	National Security and International Affairs
971	National Security
9711	National Security
972	International Affairs
9721	International Affairs
999	Nonclassifiable Establishments
9999	Nonclassifiable Establishments

Appendix E

Table E-1: Carcinogenicity Ratings for Target Compounds Included in the Regional Toxic Air Emissions Inventory Based on the U.S. EPA's Integrated Risk Information System (IRIS) Database (September 1995)

	Pollutant	Key for USEPA IRIS Ratings	CAS#
1)	Arsenic	А	7440-38-2
2)	Atrazine	Under Review	1912-24-9
3)	Benz(a)anthracene	B2	56-55-3
4)	Benzo(a)pyrene	B2	50-32-8
5)	Cadmium	B1	7440-43-9
6)	Carbon tetrachloride	B2	56-23-5
7)	Chlordane	B2	57-74-9
8)	Chromium	Under review	7440-47-3
9)	Chrome VI	A	18540-29-9
10)	Chrysene	B2	218-01-9
11)	Cobalt	D	7440-48-4

	Pollutant	Key for USEPA IRIS Ratings	CAS#
12)	Coke oven emissions	А	8007-45-2
13)	Copper	D	7440-50-8
14)	1,2-Dichloroethane	B2	107-06-2
15)	Diethylhexyl phthalate	B2	117-81-7
16)	Di-n-butyl phthalate	D	84-74-2
17)	Di-n-octyl phthlate	Under Review	117-84-0
18)	Dioxins	Not listed as a group	
19)	Ethylbenzene	D	100-41-4
20)	Fluoranthene	D	206-44-0
21)	Heptahclor	B2	76-44-8
22)	Hexachlorobenzene	С	118-74-1
23)	Hexachlorobutadiene	С	87-68-3
24)	Hexachloroethane	С	67-72-1
25)	Lead	B2	7439-92-1
26)	Akylated lead compounds	B2	7439-92-1
27)	Manganese & compounds	D	
28)	Mercury	Hg, elem.=D, (HgCl2=C)	7439-97-6 (7487-94-7)
29)	Methoxychlor	D	72-43-5
30)	Methylene chloride	B2	75-09-2
31)	Naphthalene	D	91-20-3
32)	Nickel & compounds	Ni carbonyl=B2 Ni cyanide=under review Ni subsulfide=A (in refining dust)	13463-39-3 557-19-7 12035-72-2
		Ni soluble salts=not evaluated	various
33)	Parathion	С	56-38-2
34)	Pentachloronitrobenzene	Under Review	82-68-8
35)	Pentachlorophenol	B2	87-86-5
36)	Phenol	D	108-95-2
37)	Total PCB's	B2	1336-36-3 (11097-69-1)
38)	Total PCDD's	B**	
39)	Total PCDF's	B**	
40)	Total PAH's	See below	
41)	Polycyclic Organic Matter	Under review	
42)	TCDD	B**	1746-01-6
43)	TCDF	B**	51207-31-9
44)	Tetrachloroethene (PERC)	Under review	127-18-4
45)	Trichlorethene	In preparation	79-01-6
46)	1,1,1-trichloroethane	D	71-55-6
47)	2,4,5-trichlorophenol	To be reviewed	95-95-4
48)	2,4,6-trichlorophenol	B2	88-06-2
49)	Trifluralin	С	1582-09-8
*	PAH's: (EPA's 16 PAH approach)		
	Naphthalene	D	91-20-3
	Acenapthene	Under review	83-32-9
	Acenaphthylene	D	208-96-8
	Fluorene	D	86-73-7

Pollutant	Key for USEPA IRIS Ratings	CAS#
Phenanthrene	D	85-01-8
Anthracene	D	120-12-7
Fluoranthene	D	206-44-0
Pyrene	D	129-00-0
Benzo(ghi)perylene	D	191-24-2
Benz(a)anthracene	B2	56-55-3
Chrysene	B2	218-01-9
Benzo(b)fluoranthene	B2	205-99-2
Benzo(k)fluoranthene	B2	207-08-9
Benzo(a)pyrene	B2	50-32-8
Dibenz(a,h)anthracene	B2	53-70-3
Indeno(1,2,3-cd)pyrene	B2	193-39-5

^{**}Not specifically listed or rated in IRIS, but CDD's and CDF's are regarded as likely to present a cancer hazard to humans in the U.S. EPA draft reassessment for 2,3,7,8-TCDD and related compounds.

Key A=human carcinogen

B=probable human carcinogen
B1=limited human evidence
B2=sufficient evidence in animals,
inadequate evidence in humans

C=possible human carcinogen

D=not classifiable as to human carcinogenicity E=evidence of non-carcinogenicity for humans

Ratings are from U.S. EPA's Integrated Risk Information System (IRIS) database, containing agency consensus positions on the potential adverse human health effects of approximately 500 substances, updated monthly. The ratings provided above are from September 1995.

Great Lakes Commission Regional Emission Inventory of Toxic Air Contaminants Steering Committee

MEMBERS

Hank Naour Dept. of Air Pollution Control Illinois EPA 1340 Ninth St. Springfield, IL 62702 217-785-1716 217-782-2465 - fax

*Dave Kolaz Div. of Air Pollution Control Illinois EPA P.O. Box 9276 Springfield, IL 62794 217-782-2113 217-524-4710 - Fax dkolaz@great-lakes.net

Barry Titus
Office of Air Management
Indiana Dept. of Environmental Management
P.O. Box 6015
100 N. Senate Ave.-Room 1001
Indianapolis, IN 46206
317-232-8423
317-233-3257 - Fax
btitus@ideanet.doe.state.in.us

Gary Baker Air Quality Division Michigan Dept. of Environmental Quality P.O. Box 30028 Lansing, MI 48933 517-373-7023 517-373-1265 - Fax gbaker@great-lakes.net

Chun Yi Wu Air Toxic Unit Minnesota Pollution Control Agency 520 Lafayette Rd. St. Paul, MN 55155 612-297-8298 612-297-1456 - Fax chun.yi.wu@pca.state.mn.us

Rob Sliwinski Division of Air Resources Division of Environmental Conservation P.O. Box 3250 Albany, NY 12233 518-457-2823 518-457-0794 - Fax

Bill Juris
Division of Air Pollution Control
Ohio Environmental Protection Agency
P.O. Box 1049
Columbus, OH 43215
614-644-3593
614-644-3681 - Fax
bill_juris@central.epa.ohio.gov

Paul Koval Supervisor, Air Toxics Unit Divison of Air Pollution Control Ohio Environmental Protection Agency 1800 Watermark Dr. Columbus, OH 43215 614-644-2270 614-644-3681 - Fax

John Slade
Pennsylvania Air Quality Control
Dept. of Environmental Resources
P.O. Box 2357
Harrisburg, PA 17105
717-787-4310
717-772-2303 - Fax
slade.john@a1.pader.gov

Carrie Eastman
Pennsylvania Air Quality Control
Dept. of Environmental Resources
P.O. Box 2357
Harrisburg, PA 17105
717-787-4310
717-772-2303 - Fax
eastman.carrie@a1.pader.gov

Orlando Cabrera-Rivera
Bureau of Air Management
Wisconsin Dept. of Natural Resources
P.O. 7921
101 S. Webster St. - 7th Floor
Madison, WI 53707-7921
608-267-2466
608-267-0560 - Fax
Cabreo@dnr.state.wi.us

John Shenot Bureau of Air Management Wisconsin Dept. of Natural Resources P.O. Box 7921 Madison, WI 54707-7921 608-267-0802 608-267-0560 - Fax Shenoj@dnr.state.wi.us

OBSERVERS

Dr. Suzanne King Air Division U.S. EPA Region 5 - AT-18J 77 W. Jackson Blvd. Chicago, IL 60604-3950 312-886-6054 312-886-0617 - Fax king.suzanne@epamail.epa.gov

Anne Pope Emission Factor and Methodologies Section Office of Air Quality Planning and Standards U.S. EPA Research Triangle Park, NC 27711 919-541-5373

Chuck Mann Office of Research and Development U.S. EPA (MD 62) Research Triangle Park., NC 27711 919-541-4593

919-541-4593 919-541-7891 - Fax

919-541-0684 - Fax

Dr. P.K. Misra
Atmospheric Quality and Meteorology
Section
Air Resources Branch
Ontario Ministry of Environment & Energy
125 Resources Rd., East Wing
Etobicoke, ON M9P 3V6
416-235-5768
416-235-6037 - Fax

Mr. Brulette Ministry of the Environment Province of QuJbec 3900 Rue De Marly Ste-Foy, QuJbec City GIX 4E4 418-643-8209 418-644-4598 - Fax Wilfred Jan Pollution Data Analysis Division Environment Canada 351 St. Joseph Blvd., 10th Floor Hull, QuJbec City K1A 0X3 613-994-3098 613-953-9542 - Fax

416-235-6037 - Fax

Peter Wong Ontario Ministry of Environment and Energy Air Resources Branch 125 Resources Rd. - East Wing Etobicoke, ON M9P 3V6 416-235-6130

Melissa Mc Coulough OAQPS/ESD/MD-13 U.S. EPA Research Triangle Park., NC 27711 919-541-5646 919-541-4028 - Fax

Carol Bellizzi Air Programs Branch U.S. EPA Region 2, Room 1043A Jacob K. Jarvits Federal Bldg. New York, NY 10278 212-264-4076 212-264-7613 - Fax

Pranas E. Pranckevicius Data Integration Unit U.S. EPA GLNPO - G-9J 77 West Jackson Blvd. Chicago, IL 60604-3590 312-353-3437 312-353-2018 - Fax pprancke@ges1.r05.epa.gov

William Benjey ORD - U.S. EPA Research Triangle Park., NC 27711 919-541-0821 919-541-1379 - Fax benjey@hpcc.epa.gov 313-665-9135 313-665-4370 - Fax cratza@glc.org

Mike Conley Specialist, Resource Management and Environmental Quality 400 Fourth Street Ann Arbor, MI 48103-4816 313-665-9135 313-665-4370 - Fax mconley@glc.org

group e-mail: airtoxics@great-lakes.net

Chair

GREAT LAKES COMMISSION STAFF

Carol Ratza Program Manager, Communications 400 Fourth Street Ann Arbor, MI 48103-4816

Appendix G

Southwest Lake Michigan Pilot Study Subcommittee

Dave Kolaz
Divsion of Air Pollution Control
Illinois EPA
P.O. Box 9276
Springfield, IL 62794
217-782-2113
217-524-4710 - Fax
dkolaz@great-lakes.net

Buzz Asselmeier Division of Air Pollution Control Illinois EPA P.O. Box 9276 Springfield, IL 62794 217-782-2113 217-524-4710 - Fax basselme@great-lakes.net

Barry Titus
Office of Air Management
Indiana Dept. of Environmental
Managment
P.O. Box 6015
100 N. Senate Ave.-Room 1001
Indianapolis, IN 46206
317-232-8423
317-233-3257 - Fax
btitus@ideanet.doe.state.in.us

Gary Baker Air Quality Division Michigan Dept. of Environmental Quality P.O. Box 30028 Lansing, MI 48933 517-373-7023 517-373-1265 - Fax gbaker@great-lakes.net

John Vial Air Quality Division Michigan Dept. of Environmental Quality P.O. Box 30028 Lansing, MI 48933 517-373-7023 517-373-1265 - Fax jvial@great-lakes.net

Orlando Cabrera-Rivera Bureau of Air Management Wisconsin Dept. of Natural Resources P.O. 7921 101 S. Webster St. - 7th Floor Madison, WI 53707-7921 608-267-2466 608-267-0560 - Fax Cabreo@dnr.state.wi.us

John Shenot Bureau of Air Management Wisconsin Dept. of Natural Resources P.O. Box 7921 Madison, WI 54707-7921 608-267-0802 608-267-0560 - Fax Shenoj@dnr.state.wi.us

Susan Bem
Office of Air Managment
Indiana Dept. of Environmental
Managment
P.O. Box 6015
100 N. Senate Ave.-Room 1001
Indianapolis, IN 46206
317-232-8423
317-233-3257 - Fax
sbem@ideanet.doe.state.in.us

Chris Hammack
Office of Air Managment
Indiana Dept. of Environmental
Management
P.O. Box 6015
100 N. Senate Ave.-Room 1001
Indianapolis, IN 46206
317-232-8423
317-233-3257 - Fax
chammack@ideanet.doe.state.in.us

OBSERVERS

Dr. Suzanne King Air Division U.S. EPA Region 5 - AT-18J 77 W. Jackson Blvd. Chicago, IL 60604-3950 312-886-6054 312-886-0617 - Fax king.suzanne@epamail.epa.gov

Chun Yi Wu Air Toxic Unit Minnesota Pollution Control Agency 520 Lafayette Rd. St. Paul, MN 55155 612-297-8298 612-297-1456 - Fax chun.yi.wu@pca.state.mn.us

Pranas E. Pranckevicius Data Integration Unit U.S. EPA GLNPO - G-9J 77 West Jackson Blvd. Chicago, IL 60604-3590 312-353-3437 312-353-2018 - Fax pprancke@ges1.r05.epa.gov

William Benjey ORD - U.S. EPA Research Triangle Park., NC 27711 919-541-0821 919-541-1379 - Fax benjey@hpcc.epa.gov

Peter Wong Ontario Ministry of Environment and Energy - Air Resources Branch 125 Resources Rd. - East Wing Etobicoke, ON M9P 3V6 416-235-6130 416-235-6037 - Fax

GREAT LAKES COMMISSION STAFF

Carol Ratza
Program Manager, Communications
Great Lakes Commission
400 Fourth Street
Ann Arbor, MI 48103-4816
313-665-9135
313-665-4370 - Fax
cratza@glc.org

Southwest Lake Michigan Pilot Study Quality Assurance/Quality Control Committee

John Shenot Bureau of Air Management Wisconsin Dept. of Natural Resources P.O. Box 7921 Madison, WI 54707-7921 608-267-0802 608-267-0560 - Fax Shenoj@dnr.state.wi.us

Buzz Asselmeier Division of Air Pollution Control Illinois Environmental Protection Agency P.O. Box 9276 Springfield, IL 62794 217-782-2113 217-524-4710 - Fax basselme@great-lakes.net

Gary Baker Air Quality Div. Michigan Dept. of Environmental Quality P.O. Box 30028 Lansing, MI 48933 517-373-7023 517-373-1265 - Fax gbaker@great-lakes.net

Cathy Tran
Air Toxic Unit
Minnesota Pollution Control Agency
520 Lafayette Rd.
St. Paul, MN 55155
612-297-8298
612-297-1456 - Fax
cathy.tran@pca.state.mn.us

GREAT LAKES COMMISSION STAFF

Carol Ratza
Program Manager, Communications
Great Lakes Commission
400 Fourth Street
Ann Arbor, MI 48103-4816
313-665-9135
313-665-4370 - Fax
cratza@glc.org

Mike Conley Specialist, Resource Management and Environmental Quality Great Lakes Commission 400 Fourth Street Ann Arbor, MI 48103-4816 313-665-9135 313-665-4370 - Fax mconley@glc.org

Appendix I

Southwest Lake Michigan Pilot Study Internet Mailing List: Airtoxics@great-lakes.net

Chun Yi Wu <chun.yi.wu@pca.state.mn.us>

Leonard Bruckman <leonard_bruckman@radian.com>

Dan Radin <dan radin@radian.com>

Dave Kolaz <dkolaz@great-lakes.net>

Buzz Asselmeier

basselme@great-lakes.net>

Barry Titus

btitus@ideanet.doe.state.in.us>

William Benjey

 benjey@hpcc.epa.gov>

Ming Lee < leem@gov.on.ca>

<king.suzanne@epamail.epa.gov>

Gary Baker <gbaker@great-lakes.net>

Mike Fishburn <mfishbur@irgate.tnrcc.texas.gov>

Joanne Foy <jfoy@great-lakes.net>

<link.tom@epamail.epa.gov>

<73210.3006@compuserve.com>

"Mike Hyslop" <mhyslop@glc.org>

amy_song@radian.com

john_grisinger@radian.com

susan_jeng@radian.com

jeff_schneider@radian.com

suzanne_strasser@radian.com

paterson@mtu.edu

Dennis.Gaige@dec.mailnet.state.ny.us

Mark.Hyland@dec.mailnet.state.ny.us

Rob.Sliwinski@dec.mailnet.state.ny.us

Rob. Mc Donough@dec.mailnet.state.ny.us

mfishbur@irgate.tnrcc.state.tx.us

Lloyd Lewis Eagan <eaganl@dnr.state.wi.us>

gundek@DNR.STATE.WI.US

knighk@DNR.STATE.WI.US

HUDSOJ@DNR.STATE.WI.US

"John Shenot" <shenoj@DNR.STATE.WI.US>

"Orlando Cabrera" <cabreo@DNR.STATE.WI.US>

sbem@ideanet.doe.state.in.us

rdandrew@engprn.mobil.com

jfpco@infi.net

bill_juris@central.epa.ohio.gov

warnkk@dnr.state.wi.us

tooly.lee@epamail.epa.gov

cratza@glc.org

slade.john@a1.pader.gov

eastman.carrie@a1.pader.gov

mconley@glc.org

cathy.tran@pca.state.mn.us

 $leo_f@deq.state.la.us$

sagalt@dnr.state.wi.us

chammack@ideanet.doe.state.in.us>

mdoss@glc.org

bresnaha@dnr.state.mi.us

epa2110@asmser.air.epa.state.il.us

hbh@aqsun.aqd.nps.gov

kelly.bob@epamail.epa.gov

erik_hauge@nps.gov

dania.rafiu@epamail.epa.gov

pranckevicius.pranas@epamail.epa.gov